Using Libraries of Approximate Circuits in Design of Hardware Accelerators of Deep Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138606" target="_blank" >RIV/00216305:26230/20:PU138606 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/abs/2004.10483" target="_blank" >https://arxiv.org/abs/2004.10483</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/AICAS48895.2020.9073837" target="_blank" >10.1109/AICAS48895.2020.9073837</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Libraries of Approximate Circuits in Design of Hardware Accelerators of Deep Neural Networks
Popis výsledku v původním jazyce
Approximate circuits have been developed to provide good tradeoffs between power consumption and quality of service in error resilient applications such as hardware accelerators of deep neural networks (DNN). In order to accelerate the approximate circuit design process and to support a fair benchmarking of circuit approximation methods, libraries of approximate circuits have been introduced. For example, EvoApprox8b contains hundreds of 8-bit approximate adders and multipliers. By means of genetic programming we generated an extended version of the library in which thousands of 8- to 128-bit approximate arithmetic circuits are included. These circuits form Pareto fronts with respect to several error metrics, power consumption and other circuit parameters. In our case study we show how a large set of approximate multipliers can be used to perform a resilience analysis of a hardware accelerator of ResNet DNN and to select the most suitable approximate multiplier for a given application. Results are reported for various instances of the ResNet DNN trained on CIFAR-10 benchmark problem.
Název v anglickém jazyce
Using Libraries of Approximate Circuits in Design of Hardware Accelerators of Deep Neural Networks
Popis výsledku anglicky
Approximate circuits have been developed to provide good tradeoffs between power consumption and quality of service in error resilient applications such as hardware accelerators of deep neural networks (DNN). In order to accelerate the approximate circuit design process and to support a fair benchmarking of circuit approximation methods, libraries of approximate circuits have been introduced. For example, EvoApprox8b contains hundreds of 8-bit approximate adders and multipliers. By means of genetic programming we generated an extended version of the library in which thousands of 8- to 128-bit approximate arithmetic circuits are included. These circuits form Pareto fronts with respect to several error metrics, power consumption and other circuit parameters. In our case study we show how a large set of approximate multipliers can be used to perform a resilience analysis of a hardware accelerator of ResNet DNN and to select the most suitable approximate multiplier for a given application. Results are reported for various instances of the ResNet DNN trained on CIFAR-10 benchmark problem.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-10137S" target="_blank" >GA19-10137S: Navrhování a využívání knihoven aproximativních obvodů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2nd IEEE International Conference on Artificial Intelligence Circuits and Systems
ISBN
978-1-7281-4922-6
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
243-247
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Genoa
Místo konání akce
Genoa
Datum konání akce
23. 3. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000720328700055