Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Acceleration Techniques for Automated Design of Approximate Convolutional Neural Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU146796" target="_blank" >RIV/00216305:26230/23:PU146796 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10011413" target="_blank" >https://ieeexplore.ieee.org/document/10011413</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JETCAS.2023.3235204" target="_blank" >10.1109/JETCAS.2023.3235204</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Acceleration Techniques for Automated Design of Approximate Convolutional Neural Networks

  • Popis výsledku v původním jazyce

    The main issue connected with using approximate components such as approximate multipliers in deep convolutional neural networks (CNN) during the design process is the necessity to emulate them due to the lack of native support for approximate operations in modern CPUs and GPUs, which is computationally expensive. To accelerate the emulation of approximate operations of CNNs on GPUs, we propose TFApprox4IL, a software library supporting both symmetric as well as asymmetric quantization modes, approximate 8xN bit multipliers emulated using lookup tables, a new type of approximate layer known as approximate depthwise convolution, and quantization-aware training. The TFApprox4IL performance is extensively evaluated in the simulation of approximate implementations of MobileNetV2 and ResNet networks on Nvidia Pascal and Tesla GPU architectures. Furthermore, TFApprox4IL is also evaluated in neural architecture search (NAS) algorithms to automatically design CNN architectures that directly employ approximate multipliers. On two different NAS methods, EvoApproxNAS and Google Model Search (GMS), we show how approximate multipliers can effectively be incorporated into the CNN design process. To estimate the energy consumption of the approximate CNNs, AxMultAT tool based on Timeloop and Accelergy is introduced. Contrasted to the highly optimized GPU-based CNN simulation implemented using exact arithmetic operations available within TensorFlow, the average overhead of the inference and training, introduced by TFApprox4IL, is 13.6× and 8.0× , respectively, considering ResNet50V2 and MobileNetV2 CNNs on ImageNet and CIFAR-10 data sets. This overhead was reduced by one order of magnitude with respect to previous methods.

  • Název v anglickém jazyce

    Acceleration Techniques for Automated Design of Approximate Convolutional Neural Networks

  • Popis výsledku anglicky

    The main issue connected with using approximate components such as approximate multipliers in deep convolutional neural networks (CNN) during the design process is the necessity to emulate them due to the lack of native support for approximate operations in modern CPUs and GPUs, which is computationally expensive. To accelerate the emulation of approximate operations of CNNs on GPUs, we propose TFApprox4IL, a software library supporting both symmetric as well as asymmetric quantization modes, approximate 8xN bit multipliers emulated using lookup tables, a new type of approximate layer known as approximate depthwise convolution, and quantization-aware training. The TFApprox4IL performance is extensively evaluated in the simulation of approximate implementations of MobileNetV2 and ResNet networks on Nvidia Pascal and Tesla GPU architectures. Furthermore, TFApprox4IL is also evaluated in neural architecture search (NAS) algorithms to automatically design CNN architectures that directly employ approximate multipliers. On two different NAS methods, EvoApproxNAS and Google Model Search (GMS), we show how approximate multipliers can effectively be incorporated into the CNN design process. To estimate the energy consumption of the approximate CNNs, AxMultAT tool based on Timeloop and Accelergy is introduced. Contrasted to the highly optimized GPU-based CNN simulation implemented using exact arithmetic operations available within TensorFlow, the average overhead of the inference and training, introduced by TFApprox4IL, is 13.6× and 8.0× , respectively, considering ResNet50V2 and MobileNetV2 CNNs on ImageNet and CIFAR-10 data sets. This overhead was reduced by one order of magnitude with respect to previous methods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-13001S" target="_blank" >GA21-13001S: Automatizovaný návrh hardwarových akcelerátorů pro strojového učení zohledňující výpočetní zdroje</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Journal on Emerging and Selected Topics in Circuits and Systems

  • ISSN

    2156-3357

  • e-ISSN

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    212-224

  • Kód UT WoS článku

    000965262200001

  • EID výsledku v databázi Scopus

    2-s2.0-85147308000