Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evolutionary Approximation and Neural Architecture Search

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU145799" target="_blank" >RIV/00216305:26230/22:PU145799 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10710-022-09441-z" target="_blank" >https://link.springer.com/article/10.1007/s10710-022-09441-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10710-022-09441-z" target="_blank" >10.1007/s10710-022-09441-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evolutionary Approximation and Neural Architecture Search

  • Popis výsledku v původním jazyce

    Automated neural architecture search (NAS) methods are now employed to routinely deliver high-quality neural network architectures for various challenging data sets and reduce the designers effort. The NAS methods utilizing multi-objective evolutionary algorithms are especially useful when the objective is not only to minimize the network error but also to reduce the number of parameters (weights) or power consumption of the inference phase. We propose a multi-objective NAS method based on Cartesian genetic programming for evolving convolutional neural networks (CNN). The method allows approximate operations to be used in CNNs to reduce the power consumption of a target hardware implementation. During the NAS process, a suitable CNN architecture is evolved together with selecting approximate multipliers to deliver the best trade-offs between accuracy, network size, and power consumption. The most suitable 8 x N-bit approximate multipliers are automatically selected from a library of approximate multipliers. Evolved CNNs are compared with CNNs developed by other NAS methods on the CIFAR-10 and SVHN benchmark problems.

  • Název v anglickém jazyce

    Evolutionary Approximation and Neural Architecture Search

  • Popis výsledku anglicky

    Automated neural architecture search (NAS) methods are now employed to routinely deliver high-quality neural network architectures for various challenging data sets and reduce the designers effort. The NAS methods utilizing multi-objective evolutionary algorithms are especially useful when the objective is not only to minimize the network error but also to reduce the number of parameters (weights) or power consumption of the inference phase. We propose a multi-objective NAS method based on Cartesian genetic programming for evolving convolutional neural networks (CNN). The method allows approximate operations to be used in CNNs to reduce the power consumption of a target hardware implementation. During the NAS process, a suitable CNN architecture is evolved together with selecting approximate multipliers to deliver the best trade-offs between accuracy, network size, and power consumption. The most suitable 8 x N-bit approximate multipliers are automatically selected from a library of approximate multipliers. Evolved CNNs are compared with CNNs developed by other NAS methods on the CIFAR-10 and SVHN benchmark problems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-13001S" target="_blank" >GA21-13001S: Automatizovaný návrh hardwarových akcelerátorů pro strojového učení zohledňující výpočetní zdroje</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Genetic Programming and Evolvable Machines

  • ISSN

    1389-2576

  • e-ISSN

    1573-7632

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    24

  • Strana od-do

    351-374

  • Kód UT WoS článku

    000810226500001

  • EID výsledku v databázi Scopus

    2-s2.0-85131746167