Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

NASCaps: A Framework for Neural Architecture Search to Optimize the Accuracy and Hardware Efficiency of Convolutional Capsule Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138627" target="_blank" >RIV/00216305:26230/20:PU138627 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://arxiv.org/abs/2008.08476" target="_blank" >https://arxiv.org/abs/2008.08476</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3400302.3415731" target="_blank" >10.1145/3400302.3415731</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    NASCaps: A Framework for Neural Architecture Search to Optimize the Accuracy and Hardware Efficiency of Convolutional Capsule Networks

  • Popis výsledku v původním jazyce

    Deep Neural Networks (DNNs) have made significant improvements to reach the desired accuracy to be employed in a wide variety of Machine Learning (ML) applications. Recently the Google Brain's team demonstrated the ability of Capsule Networks (CapsNets) to encode and learn spatial correlations between different input features, thereby obtaining superior learning capabilities compared to traditional (i.e., non-capsule based) DNNs. However, designing CapsNets using conventional methods is a tedious job and incurs significant training effort. Recent studies have shown that powerful methods to automatically select the best/optimal DNN model configuration for a given set of applications and a training dataset are based on the Neural Architecture Search (NAS) algorithms. Moreover, due to their extreme computational and memory requirements, DNNs are employed using the specialized hardware accelerators in IoT-Edge/CPS devices. In this paper, we propose NASCaps, an automated framework for the hardware-aware NAS of different types of DNNs, covering both traditional convolutional DNNs and CapsNets. We study the efficacy of deploying a multi-objective Genetic Algorithm (e.g., based on the NSGA-II algorithm). The proposed framework can jointly optimize the network accuracy and the corresponding hardware efficiency, expressed in terms of energy, memory, and latency of a given hardware accelerator executing the DNN inference. Besides supporting the traditional DNN layers, our framework is the first to model and supports the specialized capsule layers and dynamic routing in the NAS-flow. We evaluate our framework on different datasets, generating different network configurations, and demonstrate the tradeoffs between the different output metrics. We will open-source the complete framework and configurations of the Pareto-optimal architectures at https://github.com/ehw-fit/nascaps.

  • Název v anglickém jazyce

    NASCaps: A Framework for Neural Architecture Search to Optimize the Accuracy and Hardware Efficiency of Convolutional Capsule Networks

  • Popis výsledku anglicky

    Deep Neural Networks (DNNs) have made significant improvements to reach the desired accuracy to be employed in a wide variety of Machine Learning (ML) applications. Recently the Google Brain's team demonstrated the ability of Capsule Networks (CapsNets) to encode and learn spatial correlations between different input features, thereby obtaining superior learning capabilities compared to traditional (i.e., non-capsule based) DNNs. However, designing CapsNets using conventional methods is a tedious job and incurs significant training effort. Recent studies have shown that powerful methods to automatically select the best/optimal DNN model configuration for a given set of applications and a training dataset are based on the Neural Architecture Search (NAS) algorithms. Moreover, due to their extreme computational and memory requirements, DNNs are employed using the specialized hardware accelerators in IoT-Edge/CPS devices. In this paper, we propose NASCaps, an automated framework for the hardware-aware NAS of different types of DNNs, covering both traditional convolutional DNNs and CapsNets. We study the efficacy of deploying a multi-objective Genetic Algorithm (e.g., based on the NSGA-II algorithm). The proposed framework can jointly optimize the network accuracy and the corresponding hardware efficiency, expressed in terms of energy, memory, and latency of a given hardware accelerator executing the DNN inference. Besides supporting the traditional DNN layers, our framework is the first to model and supports the specialized capsule layers and dynamic routing in the NAS-flow. We evaluate our framework on different datasets, generating different network configurations, and demonstrate the tradeoffs between the different output metrics. We will open-source the complete framework and configurations of the Pareto-optimal architectures at https://github.com/ehw-fit/nascaps.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ20-02328Y" target="_blank" >GJ20-02328Y: CAQtuS: Počítačem podporovaná kvantitativní syntéza</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IEEE/ACM International Conference on Computer-Aided Design (ICCAD '20)

  • ISBN

    978-1-4503-8026-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    1-9

  • Název nakladatele

    Association for Computing Machinery

  • Místo vydání

    Virtual Event

  • Místo konání akce

    Virtual Conference

  • Datum konání akce

    2. 11. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku