Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

FEECA: Design Space Exploration for Low-Latency and Energy-Efficient Capsule Network Accelerators

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU139844" target="_blank" >RIV/00216305:26230/21:PU139844 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9363276/" target="_blank" >https://ieeexplore.ieee.org/document/9363276/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TVLSI.2021.3059518" target="_blank" >10.1109/TVLSI.2021.3059518</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    FEECA: Design Space Exploration for Low-Latency and Energy-Efficient Capsule Network Accelerators

  • Popis výsledku v původním jazyce

    In the past few years, Capsule Networks (CapsNets) have taken the spotlight compared to traditional convolutional neural networks (CNNs) for image classification. Unlike CNNs, CapsNets have the ability to learn the spatial relationship between features of the images. However, their complexity grows because of their heterogeneous capsule structure and the dynamic routing, which is an iterative algorithm to dynamically learn the coupling coefficients of two consecutive capsule layers. This necessitates specialized hardware accelerators for CapsNets. Moreover, a high-performance and energy-efficient design of CapsNet accelerators requires exploration of different design decisions (such as the size and configuration of the processing array and the structure of the processing elements). Toward this, we make the following key contributions: 1) FEECA, a novel methodology to explore the design space of the (micro)architectural parameters of a CapsNet hardware accelerator and 2) CapsAcc, the first specialized RTL-level hardware architecture to perform CapsNets inference with high performance and high energy efficiency. Our CapsAcc achieves significant performance improvement, compared to an optimized GPU implementation, due to its efficient implementation of key activation functions, such as squash and softmax, and an efficient data reuse for the dynamic routing. The FEECA methodology employs the Non-dominated Sorting Genetic Algorithm (NSGA-II) to explore the Pareto-optimal points with respect to area, performance, and energy consumption. This requires analytical modeling of the number of clock cycles required to perform each operation of the CapsNet inference and the memory accesses to enable a fast yet accurate design space exploration. We synthesized the complete accelerator architecture in a 45-nm CMOS technology using Synopsys design tools and evaluated it for the MNIST benchmark (as done by the original CapsNet paper from Google Brain's team)

  • Název v anglickém jazyce

    FEECA: Design Space Exploration for Low-Latency and Energy-Efficient Capsule Network Accelerators

  • Popis výsledku anglicky

    In the past few years, Capsule Networks (CapsNets) have taken the spotlight compared to traditional convolutional neural networks (CNNs) for image classification. Unlike CNNs, CapsNets have the ability to learn the spatial relationship between features of the images. However, their complexity grows because of their heterogeneous capsule structure and the dynamic routing, which is an iterative algorithm to dynamically learn the coupling coefficients of two consecutive capsule layers. This necessitates specialized hardware accelerators for CapsNets. Moreover, a high-performance and energy-efficient design of CapsNet accelerators requires exploration of different design decisions (such as the size and configuration of the processing array and the structure of the processing elements). Toward this, we make the following key contributions: 1) FEECA, a novel methodology to explore the design space of the (micro)architectural parameters of a CapsNet hardware accelerator and 2) CapsAcc, the first specialized RTL-level hardware architecture to perform CapsNets inference with high performance and high energy efficiency. Our CapsAcc achieves significant performance improvement, compared to an optimized GPU implementation, due to its efficient implementation of key activation functions, such as squash and softmax, and an efficient data reuse for the dynamic routing. The FEECA methodology employs the Non-dominated Sorting Genetic Algorithm (NSGA-II) to explore the Pareto-optimal points with respect to area, performance, and energy consumption. This requires analytical modeling of the number of clock cycles required to perform each operation of the CapsNet inference and the memory accesses to enable a fast yet accurate design space exploration. We synthesized the complete accelerator architecture in a 45-nm CMOS technology using Synopsys design tools and evaluated it for the MNIST benchmark (as done by the original CapsNet paper from Google Brain's team)

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-10137S" target="_blank" >GA19-10137S: Navrhování a využívání knihoven aproximativních obvodů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Trans. on VLSI Systems.

  • ISSN

    1063-8210

  • e-ISSN

    1557-9999

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    716-729

  • Kód UT WoS článku

    000637190300011

  • EID výsledku v databázi Scopus

    2-s2.0-85101800294