A Fast Design Space Exploration Framework for the Deep Learning Accelerators: Work-in-Progress
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138643" target="_blank" >RIV/00216305:26230/20:PU138643 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/12420/" target="_blank" >https://www.fit.vut.cz/research/publication/12420/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CODESISSS51650.2020.9244038" target="_blank" >10.1109/CODESISSS51650.2020.9244038</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Fast Design Space Exploration Framework for the Deep Learning Accelerators: Work-in-Progress
Popis výsledku v původním jazyce
The Capsule Networks (CapsNets) is an advanced form of Convolutional Neural Network (CNN), capable of learning spatial relations and being invariant to transformations. CapsNets requires complex matrix operations which current accelerators are not optimized for, concerning both training and inference passes. Current state-of-the-art simulators and design space exploration (DSE) tools for DNN hardware neglect the modeling of training operations, while requiring long exploration times that slow down the complete design flow. These impediments restrict the real-world applications of CapsNets (e.g., autonomous driving and robotics) as well as the further development of DNNs in life-long learning scenarios that require training on low-power embedded devices. Towards this, we present XploreDL , a novel framework to perform fast yet high-fidelity DSE for both inference and training accelerators, supporting both CNNs and CapsNets operations. XploreDL enables a resource-efficient DSE for accelerators, focusing on power, area, and latency, highlighting Pareto-optimal solutions which can be a green-lit to expedite the design flow. XploreDL can reach the same fidelity as ARM's SCALE-sim, while providing 600x speedup and having a 50x lower memory-footprint. Preliminary results with a deep CapsNet model on MNIST for training accelerators show promising Pareto-optimal architectures with up to 0.4 TOPS/squared-mm and 800 fJ/op efficiency. With inference accelerators for AlexNet the Pareto-optimal solutions reach up to 1.8 TOPS/squared-mm and 200 fJ/op efficiency.
Název v anglickém jazyce
A Fast Design Space Exploration Framework for the Deep Learning Accelerators: Work-in-Progress
Popis výsledku anglicky
The Capsule Networks (CapsNets) is an advanced form of Convolutional Neural Network (CNN), capable of learning spatial relations and being invariant to transformations. CapsNets requires complex matrix operations which current accelerators are not optimized for, concerning both training and inference passes. Current state-of-the-art simulators and design space exploration (DSE) tools for DNN hardware neglect the modeling of training operations, while requiring long exploration times that slow down the complete design flow. These impediments restrict the real-world applications of CapsNets (e.g., autonomous driving and robotics) as well as the further development of DNNs in life-long learning scenarios that require training on low-power embedded devices. Towards this, we present XploreDL , a novel framework to perform fast yet high-fidelity DSE for both inference and training accelerators, supporting both CNNs and CapsNets operations. XploreDL enables a resource-efficient DSE for accelerators, focusing on power, area, and latency, highlighting Pareto-optimal solutions which can be a green-lit to expedite the design flow. XploreDL can reach the same fidelity as ARM's SCALE-sim, while providing 600x speedup and having a 50x lower memory-footprint. Preliminary results with a deep CapsNet model on MNIST for training accelerators show promising Pareto-optimal architectures with up to 0.4 TOPS/squared-mm and 800 fJ/op efficiency. With inference accelerators for AlexNet the Pareto-optimal solutions reach up to 1.8 TOPS/squared-mm and 200 fJ/op efficiency.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)}
ISBN
978-1-7281-9198-0
ISSN
—
e-ISSN
—
Počet stran výsledku
3
Strana od-do
34-36
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Singapore
Místo konání akce
Singapore
Datum konání akce
12. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—