Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ReD-CaNe: A Systematic Methodology for Resilience Analysis and Design of Capsule Networks under Approximations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138604" target="_blank" >RIV/00216305:26230/20:PU138604 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://arxiv.org/pdf/1912.00700.pdf" target="_blank" >https://arxiv.org/pdf/1912.00700.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/DATE48585.2020.9116393" target="_blank" >10.23919/DATE48585.2020.9116393</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ReD-CaNe: A Systematic Methodology for Resilience Analysis and Design of Capsule Networks under Approximations

  • Popis výsledku v původním jazyce

    Recent advances in Capsule Networks (CapsNets) have shown their superior learning capability, compared to the traditional Convolutional Neural Networks (CNNs). However, the extremely high complexity of CapsNets limits their fast deployment in real-world applications. Moreover, while the resilience of CNNs have been extensively investigated to enable their energy-efficient implementations, the analysis of CapsNets resilience is a largely unexplored area, that can provide a strong foundation to investigate techniques to overcome the CapsNets complexity challenge.Following the trend of Approximate Computing to enable energy-efficient designs, we perform an extensive resilience analysis of the CapsNets inference subjected to the approximation errors. Our methodology models the errors arising from the approximate components (like multipliers), and analyze their impact on the classification accuracy of CapsNets. This enables the selection of approximate components based on the resilience of each operation of the CapsNet inference. We modify the TensorFlow framework to simulate the injection of approximation noise (based on the models of the approximate components) at different computational operations of the CapsNet inference. Our results show that the CapsNets are more resilient to the errors injected in the computations that occur during the dynamic routing (the softmax and the update of the coefficients), rather than other stages like convolutions and activation functions. Our analysis is extremely useful towards designing efficient CapsNet hardware accelerators with approximate components. To the best of our knowledge, this is the first proof-of-concept for employing approximations on the specialized CapsNet hardware.

  • Název v anglickém jazyce

    ReD-CaNe: A Systematic Methodology for Resilience Analysis and Design of Capsule Networks under Approximations

  • Popis výsledku anglicky

    Recent advances in Capsule Networks (CapsNets) have shown their superior learning capability, compared to the traditional Convolutional Neural Networks (CNNs). However, the extremely high complexity of CapsNets limits their fast deployment in real-world applications. Moreover, while the resilience of CNNs have been extensively investigated to enable their energy-efficient implementations, the analysis of CapsNets resilience is a largely unexplored area, that can provide a strong foundation to investigate techniques to overcome the CapsNets complexity challenge.Following the trend of Approximate Computing to enable energy-efficient designs, we perform an extensive resilience analysis of the CapsNets inference subjected to the approximation errors. Our methodology models the errors arising from the approximate components (like multipliers), and analyze their impact on the classification accuracy of CapsNets. This enables the selection of approximate components based on the resilience of each operation of the CapsNet inference. We modify the TensorFlow framework to simulate the injection of approximation noise (based on the models of the approximate components) at different computational operations of the CapsNet inference. Our results show that the CapsNets are more resilient to the errors injected in the computations that occur during the dynamic routing (the softmax and the update of the coefficients), rather than other stages like convolutions and activation functions. Our analysis is extremely useful towards designing efficient CapsNet hardware accelerators with approximate components. To the best of our knowledge, this is the first proof-of-concept for employing approximations on the specialized CapsNet hardware.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-10137S" target="_blank" >GA19-10137S: Navrhování a využívání knihoven aproximativních obvodů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2020 Design, Automation and Test in Europe Conference and Exhibition, DATE 2020

  • ISBN

    978-3-9819263-4-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1205-1210

  • Název nakladatele

    Institute of Electrical and Electronics Engineers

  • Místo vydání

    Grenoble

  • Místo konání akce

    Grenoble

  • Datum konání akce

    9. 3. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000610549200220