ReD-CaNe: A Systematic Methodology for Resilience Analysis and Design of Capsule Networks under Approximations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138604" target="_blank" >RIV/00216305:26230/20:PU138604 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/pdf/1912.00700.pdf" target="_blank" >https://arxiv.org/pdf/1912.00700.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/DATE48585.2020.9116393" target="_blank" >10.23919/DATE48585.2020.9116393</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ReD-CaNe: A Systematic Methodology for Resilience Analysis and Design of Capsule Networks under Approximations
Popis výsledku v původním jazyce
Recent advances in Capsule Networks (CapsNets) have shown their superior learning capability, compared to the traditional Convolutional Neural Networks (CNNs). However, the extremely high complexity of CapsNets limits their fast deployment in real-world applications. Moreover, while the resilience of CNNs have been extensively investigated to enable their energy-efficient implementations, the analysis of CapsNets resilience is a largely unexplored area, that can provide a strong foundation to investigate techniques to overcome the CapsNets complexity challenge.Following the trend of Approximate Computing to enable energy-efficient designs, we perform an extensive resilience analysis of the CapsNets inference subjected to the approximation errors. Our methodology models the errors arising from the approximate components (like multipliers), and analyze their impact on the classification accuracy of CapsNets. This enables the selection of approximate components based on the resilience of each operation of the CapsNet inference. We modify the TensorFlow framework to simulate the injection of approximation noise (based on the models of the approximate components) at different computational operations of the CapsNet inference. Our results show that the CapsNets are more resilient to the errors injected in the computations that occur during the dynamic routing (the softmax and the update of the coefficients), rather than other stages like convolutions and activation functions. Our analysis is extremely useful towards designing efficient CapsNet hardware accelerators with approximate components. To the best of our knowledge, this is the first proof-of-concept for employing approximations on the specialized CapsNet hardware.
Název v anglickém jazyce
ReD-CaNe: A Systematic Methodology for Resilience Analysis and Design of Capsule Networks under Approximations
Popis výsledku anglicky
Recent advances in Capsule Networks (CapsNets) have shown their superior learning capability, compared to the traditional Convolutional Neural Networks (CNNs). However, the extremely high complexity of CapsNets limits their fast deployment in real-world applications. Moreover, while the resilience of CNNs have been extensively investigated to enable their energy-efficient implementations, the analysis of CapsNets resilience is a largely unexplored area, that can provide a strong foundation to investigate techniques to overcome the CapsNets complexity challenge.Following the trend of Approximate Computing to enable energy-efficient designs, we perform an extensive resilience analysis of the CapsNets inference subjected to the approximation errors. Our methodology models the errors arising from the approximate components (like multipliers), and analyze their impact on the classification accuracy of CapsNets. This enables the selection of approximate components based on the resilience of each operation of the CapsNet inference. We modify the TensorFlow framework to simulate the injection of approximation noise (based on the models of the approximate components) at different computational operations of the CapsNet inference. Our results show that the CapsNets are more resilient to the errors injected in the computations that occur during the dynamic routing (the softmax and the update of the coefficients), rather than other stages like convolutions and activation functions. Our analysis is extremely useful towards designing efficient CapsNet hardware accelerators with approximate components. To the best of our knowledge, this is the first proof-of-concept for employing approximations on the specialized CapsNet hardware.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-10137S" target="_blank" >GA19-10137S: Navrhování a využívání knihoven aproximativních obvodů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2020 Design, Automation and Test in Europe Conference and Exhibition, DATE 2020
ISBN
978-3-9819263-4-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1205-1210
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Grenoble
Místo konání akce
Grenoble
Datum konání akce
9. 3. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000610549200220