Improving the Accuracy and Hardware Efficiency of Neural Networks Using Approximate Multipliers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU134964" target="_blank" >RIV/00216305:26230/20:PU134964 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/12066/" target="_blank" >https://www.fit.vut.cz/research/publication/12066/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TVLSI.2019.2940943" target="_blank" >10.1109/TVLSI.2019.2940943</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving the Accuracy and Hardware Efficiency of Neural Networks Using Approximate Multipliers
Popis výsledku v původním jazyce
Improving the accuracy of a neural network (NN) usually requires using larger hardware that consumes more energy. However, the error tolerance of NNs and their applications allow approximate computing techniques to be applied to reduce implementation costs. Given that multiplication is the most resource-intensive and power-hungry operation in NNs, more economical approximate multipliers (AMs) can significantly reduce hardware costs. In this article, we show that using AMs can also improve the NN accuracy by introducing noise. We consider two categories of AMs: 1) deliberately designed and 2) Cartesian genetic programing (CGP)-based AMs. The exact multipliers in two representative NNs, a multilayer perceptron (MLP) and a convolutional NN (CNN), are replaced with approximate designs to evaluate their effect on the classification accuracy of the Mixed National Institute of Standards and Technology (MNIST) and Street View House Numbers (SVHN) data sets, respectively. Interestingly, up to 0.63% improvement in the classification accuracy is achieved with reductions of 71.45% and 61.55% in the energy consumption and area, respectively. Finally, the features in an AM are identified that tend to make one design outperform others with respect to NN accuracy. Those features are then used to train a predictor that indicates how well an AM is likely to work in an NN.
Název v anglickém jazyce
Improving the Accuracy and Hardware Efficiency of Neural Networks Using Approximate Multipliers
Popis výsledku anglicky
Improving the accuracy of a neural network (NN) usually requires using larger hardware that consumes more energy. However, the error tolerance of NNs and their applications allow approximate computing techniques to be applied to reduce implementation costs. Given that multiplication is the most resource-intensive and power-hungry operation in NNs, more economical approximate multipliers (AMs) can significantly reduce hardware costs. In this article, we show that using AMs can also improve the NN accuracy by introducing noise. We consider two categories of AMs: 1) deliberately designed and 2) Cartesian genetic programing (CGP)-based AMs. The exact multipliers in two representative NNs, a multilayer perceptron (MLP) and a convolutional NN (CNN), are replaced with approximate designs to evaluate their effect on the classification accuracy of the Mixed National Institute of Standards and Technology (MNIST) and Street View House Numbers (SVHN) data sets, respectively. Interestingly, up to 0.63% improvement in the classification accuracy is achieved with reductions of 71.45% and 61.55% in the energy consumption and area, respectively. Finally, the features in an AM are identified that tend to make one design outperform others with respect to NN accuracy. Those features are then used to train a predictor that indicates how well an AM is likely to work in an NN.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTC18053" target="_blank" >LTC18053: Pokročilé metody Nature-Inspired optimalizačních algoritmů a HPC implementace pro řešení reálných aplikací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Trans. on VLSI Systems.
ISSN
1063-8210
e-ISSN
1557-9999
Svazek periodika
28
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
317-328
Kód UT WoS článku
000510674300002
EID výsledku v databázi Scopus
2-s2.0-85078705685