Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Features for Behavioral Anomaly Detection of Connectionless Network Buffer Overflow Attacks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU123243" target="_blank" >RIV/00216305:26230/16:PU123243 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-56549-1_6" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-56549-1_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-56549-1_6" target="_blank" >10.1007/978-3-319-56549-1_6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Features for Behavioral Anomaly Detection of Connectionless Network Buffer Overflow Attacks

  • Popis výsledku v původním jazyce

    Buffer overflow (BO) attacks are one of the most dangerous threads in the area of network security. Methods for detection of BO attacks basically use two approaches: signature matching against packets' payload versus analysis of packets' headers with the behavioral analysis of the connection's flow. The second approach is intended for detection of BO attacks regardless of packets' content which can be ciphered. In this paper, we propose a technique based on Network Behavioral Anomaly Detection (NBAD) aimed at connectionless network traffic. A similar approach has already been used in related works, but focused on connection-oriented traffic. All principles of connection-oriented NBAD cannot be applied in connectionless anomaly detection. There is designed a set of features describing the behavior of connectionless BO attacks and the tool implemented for their offline extraction from network traffic dumps. Next, we describe experiments performed in the virtual network environment utilizing SIP and TFTP network services exploitation and further data mining experiments employing supervised machine learning (ML) and Naive Bayes classifier. The exploitation of services is performed using network traffic modifications with intention to simulate real network conditions. The experimental results show the proposed approach is capable of distinguishing BO attacks from regular network traffic with high precision and class recall.

  • Název v anglickém jazyce

    Features for Behavioral Anomaly Detection of Connectionless Network Buffer Overflow Attacks

  • Popis výsledku anglicky

    Buffer overflow (BO) attacks are one of the most dangerous threads in the area of network security. Methods for detection of BO attacks basically use two approaches: signature matching against packets' payload versus analysis of packets' headers with the behavioral analysis of the connection's flow. The second approach is intended for detection of BO attacks regardless of packets' content which can be ciphered. In this paper, we propose a technique based on Network Behavioral Anomaly Detection (NBAD) aimed at connectionless network traffic. A similar approach has already been used in related works, but focused on connection-oriented traffic. All principles of connection-oriented NBAD cannot be applied in connectionless anomaly detection. There is designed a set of features describing the behavior of connectionless BO attacks and the tool implemented for their offline extraction from network traffic dumps. Next, we describe experiments performed in the virtual network environment utilizing SIP and TFTP network services exploitation and further data mining experiments employing supervised machine learning (ML) and Naive Bayes classifier. The exploitation of services is performed using network traffic modifications with intention to simulate real network conditions. The experimental results show the proposed approach is capable of distinguishing BO attacks from regular network traffic with high precision and class recall.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Information Security Applications - 17th International Workshop, WISA 2016, Jeju Island, Korea, August 25-27, 2016, Revised Selected Papers

  • ISBN

    978-3-319-56549-1

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    66-78

  • Název nakladatele

    Springer International Publishing

  • Místo vydání

    Jeju Island

  • Místo konání akce

    Jeju Island, South Korea

  • Datum konání akce

    25. 8. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000426125100006