Features for Behavioral Anomaly Detection of Connectionless Network Buffer Overflow Attacks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU123243" target="_blank" >RIV/00216305:26230/16:PU123243 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-56549-1_6" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-56549-1_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-56549-1_6" target="_blank" >10.1007/978-3-319-56549-1_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Features for Behavioral Anomaly Detection of Connectionless Network Buffer Overflow Attacks
Popis výsledku v původním jazyce
Buffer overflow (BO) attacks are one of the most dangerous threads in the area of network security. Methods for detection of BO attacks basically use two approaches: signature matching against packets' payload versus analysis of packets' headers with the behavioral analysis of the connection's flow. The second approach is intended for detection of BO attacks regardless of packets' content which can be ciphered. In this paper, we propose a technique based on Network Behavioral Anomaly Detection (NBAD) aimed at connectionless network traffic. A similar approach has already been used in related works, but focused on connection-oriented traffic. All principles of connection-oriented NBAD cannot be applied in connectionless anomaly detection. There is designed a set of features describing the behavior of connectionless BO attacks and the tool implemented for their offline extraction from network traffic dumps. Next, we describe experiments performed in the virtual network environment utilizing SIP and TFTP network services exploitation and further data mining experiments employing supervised machine learning (ML) and Naive Bayes classifier. The exploitation of services is performed using network traffic modifications with intention to simulate real network conditions. The experimental results show the proposed approach is capable of distinguishing BO attacks from regular network traffic with high precision and class recall.
Název v anglickém jazyce
Features for Behavioral Anomaly Detection of Connectionless Network Buffer Overflow Attacks
Popis výsledku anglicky
Buffer overflow (BO) attacks are one of the most dangerous threads in the area of network security. Methods for detection of BO attacks basically use two approaches: signature matching against packets' payload versus analysis of packets' headers with the behavioral analysis of the connection's flow. The second approach is intended for detection of BO attacks regardless of packets' content which can be ciphered. In this paper, we propose a technique based on Network Behavioral Anomaly Detection (NBAD) aimed at connectionless network traffic. A similar approach has already been used in related works, but focused on connection-oriented traffic. All principles of connection-oriented NBAD cannot be applied in connectionless anomaly detection. There is designed a set of features describing the behavior of connectionless BO attacks and the tool implemented for their offline extraction from network traffic dumps. Next, we describe experiments performed in the virtual network environment utilizing SIP and TFTP network services exploitation and further data mining experiments employing supervised machine learning (ML) and Naive Bayes classifier. The exploitation of services is performed using network traffic modifications with intention to simulate real network conditions. The experimental results show the proposed approach is capable of distinguishing BO attacks from regular network traffic with high precision and class recall.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Information Security Applications - 17th International Workshop, WISA 2016, Jeju Island, Korea, August 25-27, 2016, Revised Selected Papers
ISBN
978-3-319-56549-1
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
66-78
Název nakladatele
Springer International Publishing
Místo vydání
Jeju Island
Místo konání akce
Jeju Island, South Korea
Datum konání akce
25. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426125100006