Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploitation of NetEm Utility for Non-payload-based Obfuscation Techniques Improving Network Anomaly Detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126370" target="_blank" >RIV/00216305:26230/17:PU126370 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/book/10.1007%2F978-3-319-59608-2" target="_blank" >https://link.springer.com/book/10.1007%2F978-3-319-59608-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-59608-2" target="_blank" >10.1007/978-3-319-59608-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploitation of NetEm Utility for Non-payload-based Obfuscation Techniques Improving Network Anomaly Detection

  • Popis výsledku v původním jazyce

    The main objective of our work is to aid in the improvement of attack detection capabilities of machine learning based network anomaly detection. The paper leverages several techniques aimed at obfuscation of remote attacks which are based on the modification of various properties of network flows. We present a tool, based on NetEm utility and Metasploit framework, which serves for automatic exploitation of network vulnerabilities enabling utilization of obfuscation techniques. The tool is applied to the chosen set of network attacks and later we use captured data for data mining experiments employing anomaly detection features called Advanced Security Network Metrics which were designed in our previous work. Experiments confirm the assumption of achieving a better classification recall and precision only in the case of obfuscated attacks are included into a training process of the Naive Bayes classifier compared to training without prior knowledge about them. We perform accuracy evaluation of all suggested obfuscations, whereby the most successful ones are based on combinations of several techniques and damaging of packets. Experimentally, our approach does not consider a normalizer of network traffic, as there were described performance and platform dependence issues with normalizers as well as differences and problems with various implementations.

  • Název v anglickém jazyce

    Exploitation of NetEm Utility for Non-payload-based Obfuscation Techniques Improving Network Anomaly Detection

  • Popis výsledku anglicky

    The main objective of our work is to aid in the improvement of attack detection capabilities of machine learning based network anomaly detection. The paper leverages several techniques aimed at obfuscation of remote attacks which are based on the modification of various properties of network flows. We present a tool, based on NetEm utility and Metasploit framework, which serves for automatic exploitation of network vulnerabilities enabling utilization of obfuscation techniques. The tool is applied to the chosen set of network attacks and later we use captured data for data mining experiments employing anomaly detection features called Advanced Security Network Metrics which were designed in our previous work. Experiments confirm the assumption of achieving a better classification recall and precision only in the case of obfuscated attacks are included into a training process of the Naive Bayes classifier compared to training without prior knowledge about them. We perform accuracy evaluation of all suggested obfuscations, whereby the most successful ones are based on combinations of several techniques and damaging of packets. Experimentally, our approach does not consider a normalizer of network traffic, as there were described performance and platform dependence issues with normalizers as well as differences and problems with various implementations.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of 12th International Conference on Security and Privacy in Communication Networks

  • ISBN

    978-3-319-59607-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    770-773

  • Název nakladatele

    Springer International Publishing

  • Místo vydání

    Guangzhou

  • Místo konání akce

    Guangzhou, People's Republic of China

  • Datum konání akce

    10. 10. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku