Exploitation of NetEm Utility for Non-payload-based Obfuscation Techniques Improving Network Anomaly Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126370" target="_blank" >RIV/00216305:26230/17:PU126370 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/book/10.1007%2F978-3-319-59608-2" target="_blank" >https://link.springer.com/book/10.1007%2F978-3-319-59608-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-59608-2" target="_blank" >10.1007/978-3-319-59608-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploitation of NetEm Utility for Non-payload-based Obfuscation Techniques Improving Network Anomaly Detection
Popis výsledku v původním jazyce
The main objective of our work is to aid in the improvement of attack detection capabilities of machine learning based network anomaly detection. The paper leverages several techniques aimed at obfuscation of remote attacks which are based on the modification of various properties of network flows. We present a tool, based on NetEm utility and Metasploit framework, which serves for automatic exploitation of network vulnerabilities enabling utilization of obfuscation techniques. The tool is applied to the chosen set of network attacks and later we use captured data for data mining experiments employing anomaly detection features called Advanced Security Network Metrics which were designed in our previous work. Experiments confirm the assumption of achieving a better classification recall and precision only in the case of obfuscated attacks are included into a training process of the Naive Bayes classifier compared to training without prior knowledge about them. We perform accuracy evaluation of all suggested obfuscations, whereby the most successful ones are based on combinations of several techniques and damaging of packets. Experimentally, our approach does not consider a normalizer of network traffic, as there were described performance and platform dependence issues with normalizers as well as differences and problems with various implementations.
Název v anglickém jazyce
Exploitation of NetEm Utility for Non-payload-based Obfuscation Techniques Improving Network Anomaly Detection
Popis výsledku anglicky
The main objective of our work is to aid in the improvement of attack detection capabilities of machine learning based network anomaly detection. The paper leverages several techniques aimed at obfuscation of remote attacks which are based on the modification of various properties of network flows. We present a tool, based on NetEm utility and Metasploit framework, which serves for automatic exploitation of network vulnerabilities enabling utilization of obfuscation techniques. The tool is applied to the chosen set of network attacks and later we use captured data for data mining experiments employing anomaly detection features called Advanced Security Network Metrics which were designed in our previous work. Experiments confirm the assumption of achieving a better classification recall and precision only in the case of obfuscated attacks are included into a training process of the Naive Bayes classifier compared to training without prior knowledge about them. We perform accuracy evaluation of all suggested obfuscations, whereby the most successful ones are based on combinations of several techniques and damaging of packets. Experimentally, our approach does not consider a normalizer of network traffic, as there were described performance and platform dependence issues with normalizers as well as differences and problems with various implementations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 12th International Conference on Security and Privacy in Communication Networks
ISBN
978-3-319-59607-5
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
770-773
Název nakladatele
Springer International Publishing
Místo vydání
Guangzhou
Místo konání akce
Guangzhou, People's Republic of China
Datum konání akce
10. 10. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—