ASNM Datasets: A Collection of Network Attacks for Testing of Adversarial Classifiers and Intrusion Detectors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU135507" target="_blank" >RIV/00216305:26230/20:PU135507 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9115004" target="_blank" >https://ieeexplore.ieee.org/document/9115004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2020.3001768" target="_blank" >10.1109/ACCESS.2020.3001768</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ASNM Datasets: A Collection of Network Attacks for Testing of Adversarial Classifiers and Intrusion Detectors
Popis výsledku v původním jazyce
In this paper, we present three datasets that have been built from network traffic traces using ASNM features, designed in our previous work. The first dataset was built using a state-of-the-art dataset called CDX 2009, while the remaining two datasets were collected by us in 2015 and 2018, respectively. These two datasets contain several adversarial obfuscation techniques that were applied onto malicious as well as legitimate traffic samples during the execution of particular TCP network connections. Adversarial obfuscation techniques were used for evading machine learning-based network intrusion detection classifiers. Further, we showed that the performance of such classifiers can be improved when partially augmenting their training data by samples obtained from obfuscation techniques. In detail, we utilized tunneling obfuscation in HTTP(S) protocol and non-payload-based obfuscations modifying various properties of network traffic by, e.g., TCP segmentation, re-transmissions, corrupting and reordering of packets, etc. To the best of our knowledge, this is the first collection of network traffic metadata that contains adversarial techniques and is intended for non-payload-based network intrusion detection and adversarial classification. Provided datasets enable testing of the evasion resistance of arbitrary classifier that is using ASNM features.
Název v anglickém jazyce
ASNM Datasets: A Collection of Network Attacks for Testing of Adversarial Classifiers and Intrusion Detectors
Popis výsledku anglicky
In this paper, we present three datasets that have been built from network traffic traces using ASNM features, designed in our previous work. The first dataset was built using a state-of-the-art dataset called CDX 2009, while the remaining two datasets were collected by us in 2015 and 2018, respectively. These two datasets contain several adversarial obfuscation techniques that were applied onto malicious as well as legitimate traffic samples during the execution of particular TCP network connections. Adversarial obfuscation techniques were used for evading machine learning-based network intrusion detection classifiers. Further, we showed that the performance of such classifiers can be improved when partially augmenting their training data by samples obtained from obfuscation techniques. In detail, we utilized tunneling obfuscation in HTTP(S) protocol and non-payload-based obfuscations modifying various properties of network traffic by, e.g., TCP segmentation, re-transmissions, corrupting and reordering of packets, etc. To the best of our knowledge, this is the first collection of network traffic metadata that contains adversarial techniques and is intended for non-payload-based network intrusion detection and adversarial classification. Provided datasets enable testing of the evasion resistance of arbitrary classifier that is using ASNM features.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
112427-112453
Kód UT WoS článku
000546414500012
EID výsledku v databázi Scopus
2-s2.0-85087623071