Improving Network Intrusion Detection Classifiers by Non-payload-Based Exploit-Independent Obfuscations: An Adversarial Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130813" target="_blank" >RIV/00216305:26230/18:PU130813 - isvavai.cz</a>
Výsledek na webu
<a href="http://eudl.eu/doi/10.4108/eai.10-1-2019.156245" target="_blank" >http://eudl.eu/doi/10.4108/eai.10-1-2019.156245</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4108/eai.10-1-2019.156245" target="_blank" >10.4108/eai.10-1-2019.156245</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving Network Intrusion Detection Classifiers by Non-payload-Based Exploit-Independent Obfuscations: An Adversarial Approach
Popis výsledku v původním jazyce
Machine-learning based intrusion detection classifiers are able to detect unknown attacks, but at the same time they may be susceptible to evasion by obfuscation techniques. An adversary intruder which possesses a crucial knowledge about a protection system can easily bypass the detection module. The main objective of our work is to improve the performance capabilities of intrusion detection classifiers against such adversaries. To this end, we firstly propose several obfuscation techniques of remote attacks that are based on the modification of various properties of network connections; then we conduct a set of comprehensive experiments to evaluate the effectiveness of intrusion detection classifiers against obfuscated attacks. We instantiate our approach by means of a tool, based on NetEm and Metasploit, which implements our obfuscation operators on any TCP communication. This allows us to generate modified network trac for machine learning experiments employing features for assessing network statistics and behavior of TCP connections. We perform evaluation on five classifiers: Gaussian Nave Bayes, Gaussian Nave Bayes with kernel density estimation, Logistic Regression, Decision Tree, and Support Vector Machines. Our experiments confirm the assumption that it is possible to evade the intrusion detection capability of all classifiers trained without prior knowledge about obfuscated attacks, causing an exacerbation of the TPR ranging from 7.8% to 66.8%. Further, when widening the training knowledge of the classifiers by a subset of obfuscated attacks, we achieve a significant improvement of the TPR by 4.21% - 73.3%, while the FPR is deteriorated only slightly (0.1% - 1.48%). Finally, we test the capability of an obfuscations-aware classifier to detect unknown obfuscated attacks, where we achieve over 90% detection rate on average for most of the obfuscations.
Název v anglickém jazyce
Improving Network Intrusion Detection Classifiers by Non-payload-Based Exploit-Independent Obfuscations: An Adversarial Approach
Popis výsledku anglicky
Machine-learning based intrusion detection classifiers are able to detect unknown attacks, but at the same time they may be susceptible to evasion by obfuscation techniques. An adversary intruder which possesses a crucial knowledge about a protection system can easily bypass the detection module. The main objective of our work is to improve the performance capabilities of intrusion detection classifiers against such adversaries. To this end, we firstly propose several obfuscation techniques of remote attacks that are based on the modification of various properties of network connections; then we conduct a set of comprehensive experiments to evaluate the effectiveness of intrusion detection classifiers against obfuscated attacks. We instantiate our approach by means of a tool, based on NetEm and Metasploit, which implements our obfuscation operators on any TCP communication. This allows us to generate modified network trac for machine learning experiments employing features for assessing network statistics and behavior of TCP connections. We perform evaluation on five classifiers: Gaussian Nave Bayes, Gaussian Nave Bayes with kernel density estimation, Logistic Regression, Decision Tree, and Support Vector Machines. Our experiments confirm the assumption that it is possible to evade the intrusion detection capability of all classifiers trained without prior knowledge about obfuscated attacks, causing an exacerbation of the TPR ranging from 7.8% to 66.8%. Further, when widening the training knowledge of the classifiers by a subset of obfuscated attacks, we achieve a significant improvement of the TPR by 4.21% - 73.3%, while the FPR is deteriorated only slightly (0.1% - 1.48%). Finally, we test the capability of an obfuscations-aware classifier to detect unknown obfuscated attacks, where we achieve over 90% detection rate on average for most of the obfuscations.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EAI Endorsed Transactions on Security and Safety
ISSN
2032-9393
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
BE - Belgické království
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—