Approximating Complex Arithmetic Circuits with Formal Error Guarantees: 32-bit Multipliers Accomplished
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126407" target="_blank" >RIV/00216305:26230/17:PU126407 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/11420/" target="_blank" >https://www.fit.vut.cz/research/publication/11420/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCAD.2017.8203807" target="_blank" >10.1109/ICCAD.2017.8203807</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximating Complex Arithmetic Circuits with Formal Error Guarantees: 32-bit Multipliers Accomplished
Popis výsledku v původním jazyce
We present a novel method allowing one to approximate complex arithmetic circuits with formal guarantees on the approximation error. The method integrates in a unique way formal techniques for approximate equivalence checking into a search-based circuit optimisation algorithm. The key idea of our approach is to employ a novel search strategy that drives the search towards promptly verifiable approximate circuits. The method was implemented within the ABC tool and extensively evaluated on functional approximation of multipliers (with up to 32-bit operands) and adders (with up to 128-bit operands). Within a few hours, we constructed a high-quality Pareto set of 32-bit multipliers providing trade-offs between the circuit error and size. This is for the first time when such complex approximate circuits with formal error guarantees have been derived, which demonstrates an outstanding performance and scalability of our approach compared with existing methods that have either been applied to the approximation of multipliers limited to 8-bit operands or statistical testing has been used only. Our approach thus significantly improves capabilities of the existing methods and paves a way towards an automated design process of provably-correct circuit approximations.
Název v anglickém jazyce
Approximating Complex Arithmetic Circuits with Formal Error Guarantees: 32-bit Multipliers Accomplished
Popis výsledku anglicky
We present a novel method allowing one to approximate complex arithmetic circuits with formal guarantees on the approximation error. The method integrates in a unique way formal techniques for approximate equivalence checking into a search-based circuit optimisation algorithm. The key idea of our approach is to employ a novel search strategy that drives the search towards promptly verifiable approximate circuits. The method was implemented within the ABC tool and extensively evaluated on functional approximation of multipliers (with up to 32-bit operands) and adders (with up to 128-bit operands). Within a few hours, we constructed a high-quality Pareto set of 32-bit multipliers providing trade-offs between the circuit error and size. This is for the first time when such complex approximate circuits with formal error guarantees have been derived, which demonstrates an outstanding performance and scalability of our approach compared with existing methods that have either been applied to the approximation of multipliers limited to 8-bit operands or statistical testing has been used only. Our approach thus significantly improves capabilities of the existing methods and paves a way towards an automated design process of provably-correct circuit approximations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 36th IEEE/ACM International Conference On Computer Aided Design (ICCAD)
ISBN
978-1-5386-3093-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
416-423
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Irvine, CA
Místo konání akce
Irvine, CA
Datum konání akce
13. 11. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000424863100055