Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bayesian joint-sequence models for grapheme-to-phoneme conversion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126426" target="_blank" >RIV/00216305:26230/17:PU126426 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.fit.vut.cz/research/publication/11469/" target="_blank" >https://www.fit.vut.cz/research/publication/11469/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP.2017.7952674" target="_blank" >10.1109/ICASSP.2017.7952674</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bayesian joint-sequence models for grapheme-to-phoneme conversion

  • Popis výsledku v původním jazyce

    We describe a fully Bayesian approach to grapheme-to-phoneme conversion based on the joint-sequence model (JSM). Usually, standard smoothed n-gram language models (LM, e.g. Kneser-Ney) are used with JSMs to model graphone sequences (joint graphemephoneme pairs). However, we take a Bayesian approach using a hierarchical Pitman-Yor-Process LM. This provides an elegant alternative to using smoothing techniques to avoid over-training. No held-out sets and complex parameter tuning is necessary, and several convergence problems encountered in the discounted Expectation- Maximization (as used in the smoothed JSMs) are avoided. Every step is modeled by weighted finite state transducers and implemented with standard operations from the OpenFST toolkit. We evaluate our model on a standard data set (CMUdict), where it gives comparable results to the previously reported smoothed JSMs in terms of phoneme-error rate while requiring a much smaller training/ testing time. Most importantly, our model can be used in a Bayesian framework and for (partly) un-supervised training.

  • Název v anglickém jazyce

    Bayesian joint-sequence models for grapheme-to-phoneme conversion

  • Popis výsledku anglicky

    We describe a fully Bayesian approach to grapheme-to-phoneme conversion based on the joint-sequence model (JSM). Usually, standard smoothed n-gram language models (LM, e.g. Kneser-Ney) are used with JSMs to model graphone sequences (joint graphemephoneme pairs). However, we take a Bayesian approach using a hierarchical Pitman-Yor-Process LM. This provides an elegant alternative to using smoothing techniques to avoid over-training. No held-out sets and complex parameter tuning is necessary, and several convergence problems encountered in the discounted Expectation- Maximization (as used in the smoothed JSMs) are avoided. Every step is modeled by weighted finite state transducers and implemented with standard operations from the OpenFST toolkit. We evaluate our model on a standard data set (CMUdict), where it gives comparable results to the previously reported smoothed JSMs in terms of phoneme-error rate while requiring a much smaller training/ testing time. Most importantly, our model can be used in a Bayesian framework and for (partly) un-supervised training.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of ICASSP 2017

  • ISBN

    978-1-5090-4117-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    2836-2840

  • Název nakladatele

    IEEE Signal Processing Society

  • Místo vydání

    New Orleans

  • Místo konání akce

    New Orleans, USA

  • Datum konání akce

    5. 3. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000414286203002