Time Series Analysis and Prediction Statistical Models for the Duration of the Ship Handling at an Oil Terminal
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU127282" target="_blank" >RIV/00216305:26230/17:PU127282 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-74454-4_12" target="_blank" >http://dx.doi.org/10.1007/978-3-319-74454-4_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-74454-4_12" target="_blank" >10.1007/978-3-319-74454-4_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time Series Analysis and Prediction Statistical Models for the Duration of the Ship Handling at an Oil Terminal
Popis výsledku v původním jazyce
This work relates to the whole series of papers aimed at creating a marine transport and logistics process map. This map is a reflection of a real process model (descriptive model) with the possibility of extension (scaling process), determination bottlenecks (traffic jam), detecting of deviations for operational response, representation of different perspectives (control-flow, resources, performance). Also, the map can be used as a basis for prediction and decision making systems. As the object of the study, the port module was chosen, namely its component part - the oil terminal. The analysed process includes the whole ship handling from the moment of its arrival to the port (activity Notice received) till the departure (operation Pilotage). Today there are a huge number of ways to model the processes and the main aim is searching of optimal and effective methods of modern intelligent analysis (from the field of Machine Learning, Data Mining, statistics, Process Mining) for building a process map. The main point of this paper is to conduct research of time series and, then, to build statistical prediction model based on obtained characteristics. At the beginning of the article, the analysed time series is presented, which shows the distribution of the ship handling duration for the last 3 years. The main components of the time series, an explanation of their values and their effect on the prediction model are given below. In this article, the famous statistical model auto regression integrated moving average (ARIMA) was chosen for the prediction. The paper presents the results of its application to the port data, the advantages and disadvantages are indicated.
Název v anglickém jazyce
Time Series Analysis and Prediction Statistical Models for the Duration of the Ship Handling at an Oil Terminal
Popis výsledku anglicky
This work relates to the whole series of papers aimed at creating a marine transport and logistics process map. This map is a reflection of a real process model (descriptive model) with the possibility of extension (scaling process), determination bottlenecks (traffic jam), detecting of deviations for operational response, representation of different perspectives (control-flow, resources, performance). Also, the map can be used as a basis for prediction and decision making systems. As the object of the study, the port module was chosen, namely its component part - the oil terminal. The analysed process includes the whole ship handling from the moment of its arrival to the port (activity Notice received) till the departure (operation Pilotage). Today there are a huge number of ways to model the processes and the main aim is searching of optimal and effective methods of modern intelligent analysis (from the field of Machine Learning, Data Mining, statistics, Process Mining) for building a process map. The main point of this paper is to conduct research of time series and, then, to build statistical prediction model based on obtained characteristics. At the beginning of the article, the analysed time series is presented, which shows the distribution of the ship handling duration for the last 3 years. The main components of the time series, an explanation of their values and their effect on the prediction model are given below. In this article, the famous statistical model auto regression integrated moving average (ARIMA) was chosen for the prediction. The paper presents the results of its application to the port data, the advantages and disadvantages are indicated.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
RELIABILITY and STATISTICS in TRANSPORTATION and COMMUNICATION
ISBN
978-9984-818-86-3
ISSN
2367-3370
e-ISSN
—
Počet stran výsledku
10
Strana od-do
127-136
Název nakladatele
Springer International Publishing
Místo vydání
Riga
Místo konání akce
Riga
Datum konání akce
19. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000434081600012