Categorical aspects of inducing closure operators on graphs by sets of walks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU121872" target="_blank" >RIV/00216305:26230/18:PU121872 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022000017300247?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022000017300247?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcss.2017.02.005" target="_blank" >10.1016/j.jcss.2017.02.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Categorical aspects of inducing closure operators on graphs by sets of walks
Popis výsledku v původním jazyce
We study closure operators on graphs which are induced by sets of walks of identical lengths in these graphs. It is shown that the induction gives rise to a Galois correspondence between the category of closure spaces and that of graphs with walk sets. We study the two isomorphic subcategories resulting from the correspondence, in particular, the one that is a full subcategory of the category of graphs with walk sets. As examples, we discuss closure operators that are induced by path sets on some natural graphs on the digital plane Z2. These closure operators are shown to include the well known Marcus-Wyse and Khalimsky topologies, thus indicating the possibility of using them as convenient background structures on the digital plane for the study of geometric and topological properties of digital images.
Název v anglickém jazyce
Categorical aspects of inducing closure operators on graphs by sets of walks
Popis výsledku anglicky
We study closure operators on graphs which are induced by sets of walks of identical lengths in these graphs. It is shown that the induction gives rise to a Galois correspondence between the category of closure spaces and that of graphs with walk sets. We study the two isomorphic subcategories resulting from the correspondence, in particular, the one that is a full subcategory of the category of graphs with walk sets. As examples, we discuss closure operators that are induced by path sets on some natural graphs on the digital plane Z2. These closure operators are shown to include the well known Marcus-Wyse and Khalimsky topologies, thus indicating the possibility of using them as convenient background structures on the digital plane for the study of geometric and topological properties of digital images.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF COMPUTER AND SYSTEM SCIENCES
ISSN
0022-0000
e-ISSN
1090-2724
Svazek periodika
2018
Číslo periodika v rámci svazku
95
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
143-150
Kód UT WoS článku
000431386900012
EID výsledku v databázi Scopus
2-s2.0-85019704726