Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bridging the Gap Between Evolvable Hardware and Industry Using Cartesian Genetic Programming

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU127272" target="_blank" >RIV/00216305:26230/18:PU127272 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11350" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11350</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-67997-6_2" target="_blank" >10.1007/978-3-319-67997-6_2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bridging the Gap Between Evolvable Hardware and Industry Using Cartesian Genetic Programming

  • Popis výsledku v původním jazyce

    Advancements in technology developed in the early nineties have enabled researchers to successfully apply techniques of evolutionary computation in various problem domains. As a consequence, a new research direction referred to as evolvable hardware (EHW) focusing on the use of evolutionary algorithms to create specialized electronics has emerged. One of the goals of the early pioneers of EHW was to evolve complex circuits and overcome the limits of traditional design. Unfortunately, evolvable hardware found itself in a critical stage around 2010 and a very pessimistic future for EHW-based digital circuit synthesis was predicted. The problems solved by the community were of the size and complexity of that achievable in fifteens years ago and seldom compete with traditional designs. The scalability problem has been identified as one of the most difficult problems that researchers are faced with and it was not clear whether there existed a path forward that would allow the field to progress. Despite that, researchers have continued to investigate how to overcome the scalability issues and significant progress has been made in the area of evolutionary synthesis of digital circuits in recent years. The goal of this chapter is to summarize the progress in the evolutionary synthesis of gate-level digital circuits, and to identify the challenges that need to be addressed to enable evolutionary methods to penetrate into industrial practice.

  • Název v anglickém jazyce

    Bridging the Gap Between Evolvable Hardware and Industry Using Cartesian Genetic Programming

  • Popis výsledku anglicky

    Advancements in technology developed in the early nineties have enabled researchers to successfully apply techniques of evolutionary computation in various problem domains. As a consequence, a new research direction referred to as evolvable hardware (EHW) focusing on the use of evolutionary algorithms to create specialized electronics has emerged. One of the goals of the early pioneers of EHW was to evolve complex circuits and overcome the limits of traditional design. Unfortunately, evolvable hardware found itself in a critical stage around 2010 and a very pessimistic future for EHW-based digital circuit synthesis was predicted. The problems solved by the community were of the size and complexity of that achievable in fifteens years ago and seldom compete with traditional designs. The scalability problem has been identified as one of the most difficult problems that researchers are faced with and it was not clear whether there existed a path forward that would allow the field to progress. Despite that, researchers have continued to investigate how to overcome the scalability issues and significant progress has been made in the area of evolutionary synthesis of digital circuits in recent years. The goal of this chapter is to summarize the progress in the evolutionary synthesis of gate-level digital circuits, and to identify the challenges that need to be addressed to enable evolutionary methods to penetrate into industrial practice.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    20206 - Computer hardware and architecture

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Inspired by Nature

  • ISBN

    978-3-319-67996-9

  • Počet stran výsledku

    17

  • Strana od-do

    39-55

  • Počet stran knihy

    388

  • Název nakladatele

    Springer International Publishing

  • Místo vydání

    Cham

  • Kód UT WoS kapitoly