Traffic Classification and Application Identification in Network Forensics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130682" target="_blank" >RIV/00216305:26230/18:PU130682 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-99277-8" target="_blank" >http://dx.doi.org/10.1007/978-3-319-99277-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-99277-8" target="_blank" >10.1007/978-3-319-99277-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Traffic Classification and Application Identification in Network Forensics
Popis výsledku v původním jazyce
Network traffic classification is an absolute necessity for network monitoring, security analysis, and digital forensics. Without accurate traffic classification, computation demands on analysis of all IP flows are enormous. Classification can also reduce the number of flows that need to be analyzed, prioritize, and order them for an investigator to analyze the most forensically significant first. This paper presents an automatic feature elimination method based on a feature correlation matrix. Furthermore, we compare two algorithms adapted from literature, that offer high accuracy and acceptable performance, and our algorithm -- Enhanced Statistical Protocol Identification (ESPI). Each of these algorithms is used with a subset of features that best suits it. We evaluate these algorithms on their ability to identify application layer protocols and additionally applications themselves. Experiments show that the Random Forest based classifier yields the most promising results, whereas our algorithm provides an interesting tradeoff between higher performance and slightly lower accuracy.
Název v anglickém jazyce
Traffic Classification and Application Identification in Network Forensics
Popis výsledku anglicky
Network traffic classification is an absolute necessity for network monitoring, security analysis, and digital forensics. Without accurate traffic classification, computation demands on analysis of all IP flows are enormous. Classification can also reduce the number of flows that need to be analyzed, prioritize, and order them for an investigator to analyze the most forensically significant first. This paper presents an automatic feature elimination method based on a feature correlation matrix. Furthermore, we compare two algorithms adapted from literature, that offer high accuracy and acceptable performance, and our algorithm -- Enhanced Statistical Protocol Identification (ESPI). Each of these algorithms is used with a subset of features that best suits it. We evaluate these algorithms on their ability to identify application layer protocols and additionally applications themselves. Experiments show that the Random Forest based classifier yields the most promising results, whereas our algorithm provides an interesting tradeoff between higher performance and slightly lower accuracy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20172020062" target="_blank" >VI20172020062: Integrovaná platforma pro zpracování digitálních dat z bezpečnostních incidentů (TARZAN)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Fourteenth Annual IFIP WG 11.9 International Conference on Digital Forensics
ISBN
978-3-319-99277-8
ISSN
1868-4238
e-ISSN
1868-422X
Počet stran výsledku
21
Strana od-do
161-181
Název nakladatele
Springer International Publishing
Místo vydání
New Delhi
Místo konání akce
New Delhi
Datum konání akce
3. 1. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000475838900010