Single Channel Target Speaker Extraction and Recognition with Speaker Beam
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130735" target="_blank" >RIV/00216305:26230/18:PU130735 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11721" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11721</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP.2018.8462661" target="_blank" >10.1109/ICASSP.2018.8462661</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Single Channel Target Speaker Extraction and Recognition with Speaker Beam
Popis výsledku v původním jazyce
This paper addresses the problem of single channel speech recognition of a target speaker in a mixture of speech signals. We propose to exploit auxiliary speaker information provided by an adaptation utterance from the target speaker to extract and recognize only that speaker. Using such auxiliary information, we can build a speaker extraction neural network (NN) that is independent of the number of sources in the mixture, and that can track speakers across different utterances, which are two challenging issues occurring with conventional approaches for speech recognition of mixtures. We call such an informed speaker extraction scheme "SpeakerBeam". SpeakerBeam exploits a recently developed context adaptive deep NN (CADNN) that allows tracking speech from a target speaker using a speaker adaptation layer, whose parameters are adjusted depending on auxiliary features representing the target speaker characteristics. SpeakerBeam was previously investigated for speaker extraction using a microphone array. In this paper, we demonstrate that it is also efficient for single channel speaker extraction. The speaker adaptation layer can be employed either to build a speaker adaptive acoustic model that recognizes only the target speaker or a maskbased speaker extraction network that extracts the target speech from the speech mixture signal prior to recognition. We also show that the latter speaker extraction network can be optimized jointly with an acoustic model to further improve ASR performance.
Název v anglickém jazyce
Single Channel Target Speaker Extraction and Recognition with Speaker Beam
Popis výsledku anglicky
This paper addresses the problem of single channel speech recognition of a target speaker in a mixture of speech signals. We propose to exploit auxiliary speaker information provided by an adaptation utterance from the target speaker to extract and recognize only that speaker. Using such auxiliary information, we can build a speaker extraction neural network (NN) that is independent of the number of sources in the mixture, and that can track speakers across different utterances, which are two challenging issues occurring with conventional approaches for speech recognition of mixtures. We call such an informed speaker extraction scheme "SpeakerBeam". SpeakerBeam exploits a recently developed context adaptive deep NN (CADNN) that allows tracking speech from a target speaker using a speaker adaptation layer, whose parameters are adjusted depending on auxiliary features representing the target speaker characteristics. SpeakerBeam was previously investigated for speaker extraction using a microphone array. In this paper, we demonstrate that it is also efficient for single channel speaker extraction. The speaker adaptation layer can be employed either to build a speaker adaptive acoustic model that recognizes only the target speaker or a maskbased speaker extraction network that extracts the target speech from the speech mixture signal prior to recognition. We also show that the latter speaker extraction network can be optimized jointly with an acoustic model to further improve ASR performance.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of ICASSP 2018
ISBN
978-1-5386-4658-8
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
5554-5558
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Calgary
Místo konání akce
Calgary
Datum konání akce
15. 4. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000446384605144