Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Compact Network for Speakerbeam Target Speaker Extraction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134186" target="_blank" >RIV/00216305:26230/19:PU134186 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8683087" target="_blank" >https://ieeexplore.ieee.org/document/8683087</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP.2019.8683087" target="_blank" >10.1109/ICASSP.2019.8683087</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Compact Network for Speakerbeam Target Speaker Extraction

  • Popis výsledku v původním jazyce

    Speech separation that separates a mixture of speech signals into each of its sources has been an active research topic for a long time and has seen recent progress with the advent of deep learning. A related problem is target speaker extraction, i.e. extraction of only speech of a target speaker out of a mixture, given characteristics of his/her voice. We have recently proposed SpeakerBeam, which is a neural network-based target speaker extraction method. Speaker- Beam uses a speech extraction network that is adapted to the target speaker using auxiliary features derived from an adaptation utterance of that speaker. Initially, we implemented SpeakerBeam with a factorized adaptation layer, which consists of several parallel linear transformations weighted by weights derived from the auxiliary features. The factorized layer is effective for target speech extraction, but it requires a large number of parameters. In this paper, we propose to simply scale the activations of a hidden layer of the speech extraction network with weights derived from the auxiliary features. This simpler approach greatly reduces the number of model parameters by up to 60%, making it much more practical, while maintaining a similar level of performance. We tested our approach on simulated and real noisy and reverberant mixtures, showing the potential of SpeakerBeam for real-life applications. Moreover, we showed that speech extraction performance of SpeakerBeam compares favorably with that of a state-of-the-art speech separation method with a similar network configuration.

  • Název v anglickém jazyce

    Compact Network for Speakerbeam Target Speaker Extraction

  • Popis výsledku anglicky

    Speech separation that separates a mixture of speech signals into each of its sources has been an active research topic for a long time and has seen recent progress with the advent of deep learning. A related problem is target speaker extraction, i.e. extraction of only speech of a target speaker out of a mixture, given characteristics of his/her voice. We have recently proposed SpeakerBeam, which is a neural network-based target speaker extraction method. Speaker- Beam uses a speech extraction network that is adapted to the target speaker using auxiliary features derived from an adaptation utterance of that speaker. Initially, we implemented SpeakerBeam with a factorized adaptation layer, which consists of several parallel linear transformations weighted by weights derived from the auxiliary features. The factorized layer is effective for target speech extraction, but it requires a large number of parameters. In this paper, we propose to simply scale the activations of a hidden layer of the speech extraction network with weights derived from the auxiliary features. This simpler approach greatly reduces the number of model parameters by up to 60%, making it much more practical, while maintaining a similar level of performance. We tested our approach on simulated and real noisy and reverberant mixtures, showing the potential of SpeakerBeam for real-life applications. Moreover, we showed that speech extraction performance of SpeakerBeam compares favorably with that of a state-of-the-art speech separation method with a similar network configuration.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TJ01000208" target="_blank" >TJ01000208: NeurOnové sítě pro zpracování SIgnálu a dolování informací v řeČI - NOSIČI</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of ICASSP

  • ISBN

    978-1-5386-4658-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    6965-6969

  • Název nakladatele

    IEEE Signal Processing Society

  • Místo vydání

    Brighton

  • Místo konání akce

    Brighton

  • Datum konání akce

    12. 5. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000482554007040