DNN Based Embeddings for Language Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130737" target="_blank" >RIV/00216305:26230/18:PU130737 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11723" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11723</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP.2018.8462403" target="_blank" >10.1109/ICASSP.2018.8462403</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DNN Based Embeddings for Language Recognition
Popis výsledku v původním jazyce
In this work, we present a language identification (LID) system based on embeddings. In our case, an embedding is a fixed-length vector (similar to i-vector) that represents the whole utterance, but unlike i-vector it is designed to contain mostly information relevant to the target task (LID). In order to obtain these embeddings, we train a deep neural network (DNN) with sequence summarization layer to classify languages. In particular, we trained a DNN based on bidirectional long short-term memory (BLSTM) recurrent neural network (RNN) layers, whose frame-by-frame outputs are summarized into mean and standard deviation statistics. After this pooling layer, we add two fully connected layers whose outputs correspond to embeddings. Finally, we add a softmax output layer and train the whole network with multi-class cross-entropy objective to discriminate between languages. We report our results on NIST LRE 2015 and we compare the performance of embeddings and corresponding i-vectors both modeled by Gaussian Linear Classifier (GLC). Using only embeddings resulted in comparable performance to i-vectors and by performing score-level fusion we achieved 7.3% relative improvement over the baseline.
Název v anglickém jazyce
DNN Based Embeddings for Language Recognition
Popis výsledku anglicky
In this work, we present a language identification (LID) system based on embeddings. In our case, an embedding is a fixed-length vector (similar to i-vector) that represents the whole utterance, but unlike i-vector it is designed to contain mostly information relevant to the target task (LID). In order to obtain these embeddings, we train a deep neural network (DNN) with sequence summarization layer to classify languages. In particular, we trained a DNN based on bidirectional long short-term memory (BLSTM) recurrent neural network (RNN) layers, whose frame-by-frame outputs are summarized into mean and standard deviation statistics. After this pooling layer, we add two fully connected layers whose outputs correspond to embeddings. Finally, we add a softmax output layer and train the whole network with multi-class cross-entropy objective to discriminate between languages. We report our results on NIST LRE 2015 and we compare the performance of embeddings and corresponding i-vectors both modeled by Gaussian Linear Classifier (GLC). Using only embeddings resulted in comparable performance to i-vectors and by performing score-level fusion we achieved 7.3% relative improvement over the baseline.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of ICASSP 2018
ISBN
978-1-5386-4658-8
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
5184-5188
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Calgary
Místo konání akce
Calgary
Datum konání akce
15. 4. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000446384605071