Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

DNN Based Embeddings for Language Recognition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130737" target="_blank" >RIV/00216305:26230/18:PU130737 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11723" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11723</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP.2018.8462403" target="_blank" >10.1109/ICASSP.2018.8462403</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    DNN Based Embeddings for Language Recognition

  • Popis výsledku v původním jazyce

    In this work, we present a language identification (LID) system based on embeddings. In our case, an embedding is a fixed-length vector (similar to i-vector) that represents the whole utterance, but unlike i-vector it is designed to contain mostly information relevant to the target task (LID). In order to obtain these embeddings, we train a deep neural network (DNN) with sequence summarization layer to classify languages. In particular, we trained a DNN based on bidirectional long short-term memory (BLSTM) recurrent neural network (RNN) layers, whose frame-by-frame outputs are summarized into mean and standard deviation statistics. After this pooling layer, we add two fully connected layers whose outputs correspond to embeddings. Finally, we add a softmax output layer and train the whole network with multi-class cross-entropy objective to discriminate between languages. We report our results on NIST LRE 2015 and we compare the performance of embeddings and corresponding i-vectors both modeled by Gaussian Linear Classifier (GLC). Using only embeddings resulted in comparable performance to i-vectors and by performing score-level fusion we achieved 7.3% relative improvement over the baseline.

  • Název v anglickém jazyce

    DNN Based Embeddings for Language Recognition

  • Popis výsledku anglicky

    In this work, we present a language identification (LID) system based on embeddings. In our case, an embedding is a fixed-length vector (similar to i-vector) that represents the whole utterance, but unlike i-vector it is designed to contain mostly information relevant to the target task (LID). In order to obtain these embeddings, we train a deep neural network (DNN) with sequence summarization layer to classify languages. In particular, we trained a DNN based on bidirectional long short-term memory (BLSTM) recurrent neural network (RNN) layers, whose frame-by-frame outputs are summarized into mean and standard deviation statistics. After this pooling layer, we add two fully connected layers whose outputs correspond to embeddings. Finally, we add a softmax output layer and train the whole network with multi-class cross-entropy objective to discriminate between languages. We report our results on NIST LRE 2015 and we compare the performance of embeddings and corresponding i-vectors both modeled by Gaussian Linear Classifier (GLC). Using only embeddings resulted in comparable performance to i-vectors and by performing score-level fusion we achieved 7.3% relative improvement over the baseline.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of ICASSP 2018

  • ISBN

    978-1-5386-4658-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    5184-5188

  • Název nakladatele

    IEEE Signal Processing Society

  • Místo vydání

    Calgary

  • Místo konání akce

    Calgary

  • Datum konání akce

    15. 4. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000446384605071