SoluProt: Prediction of Protein Solubility
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130777" target="_blank" >RIV/00216305:26230/18:PU130777 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11808" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11808</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SoluProt: Prediction of Protein Solubility
Popis výsledku v původním jazyce
Protein solubility poses a major bottleneck in production of many therapeutic and industrially attractive proteins. Experimental solubilization attempts are plagued by relatively low success rates and often lead to the loss of biological activity. Therefore, any advance in computational prediction of protein solubility may reduce the cost of experimental studies significantly. Here, we propose a novel software tool SoluProt for prediction of solubility from protein sequence based on machine learning and TargetTrack database. SoluProt achieved the best accuracy 58.2% and AUC 0.61 of all available tools at an independent balanced test set derived from NESG database. While the absolute prediction performance is rather low, SoluProt can still help to reduce costs of experimental studies significantly by efficient prioritization of protein sequences. The main SoluProt contribution lies in improved preprocessing of noisy training data and sensible selection of sequence features included in the prediction model.
Název v anglickém jazyce
SoluProt: Prediction of Protein Solubility
Popis výsledku anglicky
Protein solubility poses a major bottleneck in production of many therapeutic and industrially attractive proteins. Experimental solubilization attempts are plagued by relatively low success rates and often lead to the loss of biological activity. Therefore, any advance in computational prediction of protein solubility may reduce the cost of experimental studies significantly. Here, we propose a novel software tool SoluProt for prediction of solubility from protein sequence based on machine learning and TargetTrack database. SoluProt achieved the best accuracy 58.2% and AUC 0.61 of all available tools at an independent balanced test set derived from NESG database. While the absolute prediction performance is rather low, SoluProt can still help to reduce costs of experimental studies significantly by efficient prioritization of protein sequences. The main SoluProt contribution lies in improved preprocessing of noisy training data and sensible selection of sequence features included in the prediction model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
DAZ & WIKT 2018 Proceedings
ISBN
978-80-214-5679-2
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
261-265
Název nakladatele
Brno University of Technology
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
11. 10. 2018
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—