Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Camera Orientation Estimation in Natural Scenes Using Semantic Cues

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130783" target="_blank" >RIV/00216305:26230/18:PU130783 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11829" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11829</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/3DV.2018.00033" target="_blank" >10.1109/3DV.2018.00033</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Camera Orientation Estimation in Natural Scenes Using Semantic Cues

  • Popis výsledku v původním jazyce

    Camera orientation estimation in natural scenes has recently been approached by several methods, which rely mainly on matching a single modality - edges or horizon lines with 3D digital elevation models. In contrast to previous works, our new image to model matching scheme is based on a fusion of multiple modalities and is designed to be naturally extensible with different cues. In this paper, we use semantic segments and edges. To our knowledge, we are the first to consider using semantic segments jointly with edges for alignment with digital elevation model. We show that high-level features, such as semantic segments, complement the low-level edge information and together help to estimate the camera orientation more robustly compared to methods relying solely on edges or horizon lines. In a series of experiments, we show that segment boundaries tend to be imprecise and important information for matching is encoded in the segment area and a coarse shape. Intuitively, semantic segments encode low frequency information as opposed to edges, which encode high frequencies. Our experiments exhibit that semantic segments and edges are complementary, improving camera orientation estimation reliability when used together. We demonstrate that our method combining semantic and edge features is able to reach state-of-the-art performance on three datasets.

  • Název v anglickém jazyce

    Camera Orientation Estimation in Natural Scenes Using Semantic Cues

  • Popis výsledku anglicky

    Camera orientation estimation in natural scenes has recently been approached by several methods, which rely mainly on matching a single modality - edges or horizon lines with 3D digital elevation models. In contrast to previous works, our new image to model matching scheme is based on a fusion of multiple modalities and is designed to be naturally extensible with different cues. In this paper, we use semantic segments and edges. To our knowledge, we are the first to consider using semantic segments jointly with edges for alignment with digital elevation model. We show that high-level features, such as semantic segments, complement the low-level edge information and together help to estimate the camera orientation more robustly compared to methods relying solely on edges or horizon lines. In a series of experiments, we show that segment boundaries tend to be imprecise and important information for matching is encoded in the segment area and a coarse shape. Intuitively, semantic segments encode low frequency information as opposed to edges, which encode high frequencies. Our experiments exhibit that semantic segments and edges are complementary, improving camera orientation estimation reliability when used together. We demonstrate that our method combining semantic and edge features is able to reach state-of-the-art performance on three datasets.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TE01020415" target="_blank" >TE01020415: Centrum kompetence ve zpracování vizuálních informací (V3C - Visual Computing Competence Center)</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2018 International Conference on 3D Vision

  • ISBN

    978-1-5386-2610-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    208-217

  • Název nakladatele

    IEEE Computer Society

  • Místo vydání

    Verona

  • Místo konání akce

    Verona

  • Datum konání akce

    5. 9. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000449774200022