Camera Orientation Estimation in Natural Scenes Using Semantic Cues
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130783" target="_blank" >RIV/00216305:26230/18:PU130783 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11829" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11829</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/3DV.2018.00033" target="_blank" >10.1109/3DV.2018.00033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Camera Orientation Estimation in Natural Scenes Using Semantic Cues
Popis výsledku v původním jazyce
Camera orientation estimation in natural scenes has recently been approached by several methods, which rely mainly on matching a single modality - edges or horizon lines with 3D digital elevation models. In contrast to previous works, our new image to model matching scheme is based on a fusion of multiple modalities and is designed to be naturally extensible with different cues. In this paper, we use semantic segments and edges. To our knowledge, we are the first to consider using semantic segments jointly with edges for alignment with digital elevation model. We show that high-level features, such as semantic segments, complement the low-level edge information and together help to estimate the camera orientation more robustly compared to methods relying solely on edges or horizon lines. In a series of experiments, we show that segment boundaries tend to be imprecise and important information for matching is encoded in the segment area and a coarse shape. Intuitively, semantic segments encode low frequency information as opposed to edges, which encode high frequencies. Our experiments exhibit that semantic segments and edges are complementary, improving camera orientation estimation reliability when used together. We demonstrate that our method combining semantic and edge features is able to reach state-of-the-art performance on three datasets.
Název v anglickém jazyce
Camera Orientation Estimation in Natural Scenes Using Semantic Cues
Popis výsledku anglicky
Camera orientation estimation in natural scenes has recently been approached by several methods, which rely mainly on matching a single modality - edges or horizon lines with 3D digital elevation models. In contrast to previous works, our new image to model matching scheme is based on a fusion of multiple modalities and is designed to be naturally extensible with different cues. In this paper, we use semantic segments and edges. To our knowledge, we are the first to consider using semantic segments jointly with edges for alignment with digital elevation model. We show that high-level features, such as semantic segments, complement the low-level edge information and together help to estimate the camera orientation more robustly compared to methods relying solely on edges or horizon lines. In a series of experiments, we show that segment boundaries tend to be imprecise and important information for matching is encoded in the segment area and a coarse shape. Intuitively, semantic segments encode low frequency information as opposed to edges, which encode high frequencies. Our experiments exhibit that semantic segments and edges are complementary, improving camera orientation estimation reliability when used together. We demonstrate that our method combining semantic and edge features is able to reach state-of-the-art performance on three datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TE01020415" target="_blank" >TE01020415: Centrum kompetence ve zpracování vizuálních informací (V3C - Visual Computing Competence Center)</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 International Conference on 3D Vision
ISBN
978-1-5386-2610-8
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
208-217
Název nakladatele
IEEE Computer Society
Místo vydání
Verona
Místo konání akce
Verona
Datum konání akce
5. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000449774200022