Dereverberation and Beamforming in Robust Far-Field Speaker Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130795" target="_blank" >RIV/00216305:26230/18:PU130795 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isca-speech.org/archive/Interspeech_2018/abstracts/2306.html" target="_blank" >https://www.isca-speech.org/archive/Interspeech_2018/abstracts/2306.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2018-2306" target="_blank" >10.21437/Interspeech.2018-2306</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dereverberation and Beamforming in Robust Far-Field Speaker Recognition
Popis výsledku v původním jazyce
This paper deals with robust speaker verification (SV) in farfield sensing. The robustness is verified on a subset of NIST SRE 2010 corpus retransmitted in multiple real rooms of different acoustics and captured with multiple microphones. We experimented with various data preprocessing steps including different approaches to dereverberation and beamforming applied to ad-hoc microphone arrays. We found that significant improvements in accuracy can be achieved with neural network based generalized eigenvalue beamformer preceded by weighted prediction error dereverberation. We also explored the effect of data augmentation by adding various real or simulated room acoustic properties to the Probabilistic Linear Discriminant Analysis (PLDA) training dataset. As a result, we developed a speaker recognition system whose performance is stable across different room acoustic conditions. It yields 41.4% relative improvement in performance over the system without multi-channel processing tested on the cleanest microphone data. With the best combination of data preprocessing and augmentation, we obtained a performance close to the one we achieved with the original clean test data.
Název v anglickém jazyce
Dereverberation and Beamforming in Robust Far-Field Speaker Recognition
Popis výsledku anglicky
This paper deals with robust speaker verification (SV) in farfield sensing. The robustness is verified on a subset of NIST SRE 2010 corpus retransmitted in multiple real rooms of different acoustics and captured with multiple microphones. We experimented with various data preprocessing steps including different approaches to dereverberation and beamforming applied to ad-hoc microphone arrays. We found that significant improvements in accuracy can be achieved with neural network based generalized eigenvalue beamformer preceded by weighted prediction error dereverberation. We also explored the effect of data augmentation by adding various real or simulated room acoustic properties to the Probabilistic Linear Discriminant Analysis (PLDA) training dataset. As a result, we developed a speaker recognition system whose performance is stable across different room acoustic conditions. It yields 41.4% relative improvement in performance over the system without multi-channel processing tested on the cleanest microphone data. With the best combination of data preprocessing and augmentation, we obtained a performance close to the one we achieved with the original clean test data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Interspeech 2018
ISBN
—
ISSN
1990-9772
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1334-1338
Název nakladatele
International Speech Communication Association
Místo vydání
Hyderabad
Místo konání akce
Hyderabad, India
Datum konání akce
2. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000465363900279