Geometric Alignment by Deep Learning for Recognition of Challenging License Plates
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130797" target="_blank" >RIV/00216305:26230/18:PU130797 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8569259" target="_blank" >https://ieeexplore.ieee.org/document/8569259</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ITSC.2018.8569259" target="_blank" >10.1109/ITSC.2018.8569259</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geometric Alignment by Deep Learning for Recognition of Challenging License Plates
Popis výsledku v původním jazyce
In this paper, we explore the problem of license plate recognition in-the-wild (in the meaning of capturing data in unconstrained conditions, taken from arbitrary viewpoints and distances). We propose a method for automatic license plate recognition in-the-wild based on a geometric alignment of license plates as a preceding step for holistic license plate recognition. The alignment is done by a Convolutional Neural Network that estimates control points for rectifying the image and the following rectification step is formulated so that the whole alignment and recognition process can be assembled into one computational graph of a contemporary neural network framework, such as Tensorflow. The experiments show that the use of the aligner helps the recognition considerably: the error rate dropped from 9.6 % to 2.1 % on real-life images of license plates. The experiments also show that the solution is fast - it is capable of real-time processing even on an embedded and low-power platform (Jetson TX2). We collected and annotated a dataset of license plates called CamCar6k, containing 6,064 images with annotated corner points and ground truth texts. We make this dataset publicly available.
Název v anglickém jazyce
Geometric Alignment by Deep Learning for Recognition of Challenging License Plates
Popis výsledku anglicky
In this paper, we explore the problem of license plate recognition in-the-wild (in the meaning of capturing data in unconstrained conditions, taken from arbitrary viewpoints and distances). We propose a method for automatic license plate recognition in-the-wild based on a geometric alignment of license plates as a preceding step for holistic license plate recognition. The alignment is done by a Convolutional Neural Network that estimates control points for rectifying the image and the following rectification step is formulated so that the whole alignment and recognition process can be assembled into one computational graph of a contemporary neural network framework, such as Tensorflow. The experiments show that the use of the aligner helps the recognition considerably: the error rate dropped from 9.6 % to 2.1 % on real-life images of license plates. The experiments also show that the solution is fast - it is capable of real-time processing even on an embedded and low-power platform (Jetson TX2). We collected and annotated a dataset of license plates called CamCar6k, containing 6,064 images with annotated corner points and ground truth texts. We make this dataset publicly available.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 21st International Conference on Intelligent Transportation Systems (ITSC)
ISBN
978-1-72810-321-1
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
3524-3529
Název nakladatele
IEEE Intelligent Transportation Systems Society
Místo vydání
Lahaina, Maui
Místo konání akce
Maui, Hawaii
Datum konání akce
4. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000457881303079