Automatic Speech Recognition and Topic Identification for Almost-Zero-Resource Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU136057" target="_blank" >RIV/00216305:26230/18:PU136057 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isca-speech.org/archive/Interspeech_2018/abstracts/1836.html" target="_blank" >https://www.isca-speech.org/archive/Interspeech_2018/abstracts/1836.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2018-1836" target="_blank" >10.21437/Interspeech.2018-1836</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Speech Recognition and Topic Identification for Almost-Zero-Resource Languages
Popis výsledku v původním jazyce
Automatic speech recognition (ASR) systems often need to be developed for extremely low-resource languages to serve enduses such as audio content categorization and search. While universal phone recognition is natural to consider when no transcribed speech is available to train an ASR system in a language, adapting universal phone models using very small amounts (minutes rather than hours) of transcribed speech also needs to be studied, particularly with state-of-the-art DNN-based acoustic models. The DARPA LORELEI program provides a framework for such very-low-resource ASR studies, and provides an extrinsic metric for evaluating ASR performance in a humanitarian assistance, disaster relief setting. This paper presents our Kaldi-based systems for the program, which employ a universal phone modeling approach to ASR, and describes recipes for very rapid adaptation of this universal ASR system. The results we obtain significantly outperform results obtained by many competing approaches on the NIST LoReHLT 2017 Evaluation datasets
Název v anglickém jazyce
Automatic Speech Recognition and Topic Identification for Almost-Zero-Resource Languages
Popis výsledku anglicky
Automatic speech recognition (ASR) systems often need to be developed for extremely low-resource languages to serve enduses such as audio content categorization and search. While universal phone recognition is natural to consider when no transcribed speech is available to train an ASR system in a language, adapting universal phone models using very small amounts (minutes rather than hours) of transcribed speech also needs to be studied, particularly with state-of-the-art DNN-based acoustic models. The DARPA LORELEI program provides a framework for such very-low-resource ASR studies, and provides an extrinsic metric for evaluating ASR performance in a humanitarian assistance, disaster relief setting. This paper presents our Kaldi-based systems for the program, which employ a universal phone modeling approach to ASR, and describes recipes for very rapid adaptation of this universal ASR system. The results we obtain significantly outperform results obtained by many competing approaches on the NIST LoReHLT 2017 Evaluation datasets
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Interspeech
ISBN
—
ISSN
1990-9772
e-ISSN
—
Počet stran výsledku
5
Strana od-do
2052-2056
Název nakladatele
International Speech Communication Association
Místo vydání
Hyderabad
Místo konání akce
Hyderabad, India
Datum konání akce
2. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000465363900431