Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Unsupervised Word Segmentation from Speech with Attention

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU136058" target="_blank" >RIV/00216305:26230/18:PU136058 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.isca-speech.org/archive/Interspeech_2018/pdfs/1308.pdf" target="_blank" >https://www.isca-speech.org/archive/Interspeech_2018/pdfs/1308.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2018-1308" target="_blank" >10.21437/Interspeech.2018-1308</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unsupervised Word Segmentation from Speech with Attention

  • Popis výsledku v původním jazyce

    We present a first attempt to perform attentional word segmentation directly from the speech signal, with the final goal to automatically identify lexical units in a low-resource, unwritten language (UL). Our methodology assumes a pairing between recordings in the UL with translations in a well-resourced language. It uses Acoustic Unit Discovery (AUD) to convert speech into a sequence of pseudo-phones that is segmented using neural soft-alignments produced by a neural machine translation model. Evaluation uses an actual Bantu UL, Mboshi; comparisons to monolingual and bilingual baselines illustrate the potential of attentional word segmentation for language documentation.

  • Název v anglickém jazyce

    Unsupervised Word Segmentation from Speech with Attention

  • Popis výsledku anglicky

    We present a first attempt to perform attentional word segmentation directly from the speech signal, with the final goal to automatically identify lexical units in a low-resource, unwritten language (UL). Our methodology assumes a pairing between recordings in the UL with translations in a well-resourced language. It uses Acoustic Unit Discovery (AUD) to convert speech into a sequence of pseudo-phones that is segmented using neural soft-alignments produced by a neural machine translation model. Evaluation uses an actual Bantu UL, Mboshi; comparisons to monolingual and bilingual baselines illustrate the potential of attentional word segmentation for language documentation.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceeding of Interspeech 2018

  • ISBN

  • ISSN

    1990-9772

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    2678-2682

  • Název nakladatele

    International Speech Communication Association

  • Místo vydání

    Hyderabad

  • Místo konání akce

    Hyderabad, India

  • Datum konání akce

    2. 9. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000465363900561