Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Unsupervised Word Segmentation from Discrete Speech Units in Low-Resource Settings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU150717" target="_blank" >RIV/00216305:26230/22:PU150717 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2022.sigul-1.1.pdf" target="_blank" >https://aclanthology.org/2022.sigul-1.1.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unsupervised Word Segmentation from Discrete Speech Units in Low-Resource Settings

  • Popis výsledku v původním jazyce

    Documenting languages helps to prevent the extinction of endangered dialects - many of which are otherwise expected to dis- appear by the end of the century. When documenting oral languages, unsupervised word segmentation (UWS) from speech is a useful, yet challenging, task. It consists in producing time-stamps for slicing utterances into smaller segments corresponding to words, being performed from phonetic transcriptions, or in the absence of these, from the output of unsupervised speech discretization models. These discretization models are trained using raw speech only, producing discrete speech units that can be applied for downstream (text-based) tasks. In this paper we compare five of these models: three Bayesian and two neural approaches, with regards to the exploitability of the produced units for UWS. For the UWS task, we experiment with two models, using as our target language the Mboshi (Bantu C25), an unwritten language from Congo-Brazzaville. Additionally, we report results for Finnish, Hungarian, Romanian and Russian in equally low-resource settings, using only 4 hours of speech. Our results suggest that neural models for speech discretization are difficult to exploit in our setting, and that it might be necessary to adapt them to limit sequence length. We obtain our best UWS results by using Bayesian models that produce high quality, yet compressed, discrete representations of the input speech signal.

  • Název v anglickém jazyce

    Unsupervised Word Segmentation from Discrete Speech Units in Low-Resource Settings

  • Popis výsledku anglicky

    Documenting languages helps to prevent the extinction of endangered dialects - many of which are otherwise expected to dis- appear by the end of the century. When documenting oral languages, unsupervised word segmentation (UWS) from speech is a useful, yet challenging, task. It consists in producing time-stamps for slicing utterances into smaller segments corresponding to words, being performed from phonetic transcriptions, or in the absence of these, from the output of unsupervised speech discretization models. These discretization models are trained using raw speech only, producing discrete speech units that can be applied for downstream (text-based) tasks. In this paper we compare five of these models: three Bayesian and two neural approaches, with regards to the exploitability of the produced units for UWS. For the UWS task, we experiment with two models, using as our target language the Mboshi (Bantu C25), an unwritten language from Congo-Brazzaville. Additionally, we report results for Finnish, Hungarian, Romanian and Russian in equally low-resource settings, using only 4 hours of speech. Our results suggest that neural models for speech discretization are difficult to exploit in our setting, and that it might be necessary to adapt them to limit sequence length. We obtain our best UWS results by using Bayesian models that produce high quality, yet compressed, discrete representations of the input speech signal.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the the 1st Annual Meeting of the ELRA/ISCA Special Interest Group on Under-Resourced Languages

  • ISBN

    979-10-95546-91-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    1-9

  • Název nakladatele

    European Language Resources Association

  • Místo vydání

    Marseile

  • Místo konání akce

    Marseile

  • Datum konání akce

    20. 6. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku