Comparison of bubble detectors and size distribution estimators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU136060" target="_blank" >RIV/00216305:26230/18:PU136060 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167865517304282" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167865517304282</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.patrec.2017.11.014" target="_blank" >10.1016/j.patrec.2017.11.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of bubble detectors and size distribution estimators
Popis výsledku v původním jazyce
Detection, counting and characterization of bubbles, that is, transparent objects in a liquid, is important in many industrial applications. These applications include monitoring of pulp delignification and multiphase dispersion processes common in the chemical, pharmaceutical, and food industries. Typically the aim is to measure the bubble size distribution. In this paper, we present a comprehensive comparison of bubble detection methods for challenging industrial image data. Moreover, we compare the detection-based methods to a direct bubble size distribution estimation method that does not require the detection of individual bubbles. The experiments showed that the approach based on a convolutional neural network (CNN) outperforms the other methods in detection accuracy. However, the boosting-based approaches were remarkably faster to compute. The power spectrum approach for direct bubble size distribution estimation produced accurate distributions and it is fast to compute, but it does not provide the spatial locations of the bubbles. Selecting the most suitable method depends on the specific application.
Název v anglickém jazyce
Comparison of bubble detectors and size distribution estimators
Popis výsledku anglicky
Detection, counting and characterization of bubbles, that is, transparent objects in a liquid, is important in many industrial applications. These applications include monitoring of pulp delignification and multiphase dispersion processes common in the chemical, pharmaceutical, and food industries. Typically the aim is to measure the bubble size distribution. In this paper, we present a comprehensive comparison of bubble detection methods for challenging industrial image data. Moreover, we compare the detection-based methods to a direct bubble size distribution estimation method that does not require the detection of individual bubbles. The experiments showed that the approach based on a convolutional neural network (CNN) outperforms the other methods in detection accuracy. However, the boosting-based approaches were remarkably faster to compute. The power spectrum approach for direct bubble size distribution estimation produced accurate distributions and it is fast to compute, but it does not provide the spatial locations of the bubbles. Selecting the most suitable method depends on the specific application.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PATTERN RECOGNITION LETTERS
ISSN
0167-8655
e-ISSN
1872-7344
Svazek periodika
101
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
60-66
Kód UT WoS článku
000418101400009
EID výsledku v databázi Scopus
2-s2.0-85035027807