Acceleration of Feature Extraction for Real-Time Analysis of Encrypted Network Traffic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU132971" target="_blank" >RIV/00216305:26230/19:PU132971 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/DDECS.2019.8724658" target="_blank" >http://dx.doi.org/10.1109/DDECS.2019.8724658</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/DDECS.2019.8724658" target="_blank" >10.1109/DDECS.2019.8724658</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Acceleration of Feature Extraction for Real-Time Analysis of Encrypted Network Traffic
Popis výsledku v původním jazyce
With the growing amount of encrypted network traffic, it is important to have tools for the analysis and classification of encrypted network data. Encrypted network traffic is usually analysed by statistical methods because Deep Packet Inspection or pattern matching is not applicable. However, the statistical methods are usually designed to work offline on already captured network traffic. For real-time analysis, hardware acceleration is needed to achieve wire-speed 10 Gbps throughput. Therefore, we focus on real-time monitoring of encrypted network traffic and propose a new acceleration method to extract features from encrypted network data. Approximate computing is used to speed up the computation of entropy for the input data stream and to reduce FPGA logic utilization. As can be seen in the results, the precision of classification has decreased only by 0.1 to 0.2. Moreover, proposed hardware architecture has very low FPGA logic utilization and can operate on high frequency.
Název v anglickém jazyce
Acceleration of Feature Extraction for Real-Time Analysis of Encrypted Network Traffic
Popis výsledku anglicky
With the growing amount of encrypted network traffic, it is important to have tools for the analysis and classification of encrypted network data. Encrypted network traffic is usually analysed by statistical methods because Deep Packet Inspection or pattern matching is not applicable. However, the statistical methods are usually designed to work offline on already captured network traffic. For real-time analysis, hardware acceleration is needed to achieve wire-speed 10 Gbps throughput. Therefore, we focus on real-time monitoring of encrypted network traffic and propose a new acceleration method to extract features from encrypted network data. Approximate computing is used to speed up the computation of entropy for the input data stream and to reduce FPGA logic utilization. As can be seen in the results, the precision of classification has decreased only by 0.1 to 0.2. Moreover, proposed hardware architecture has very low FPGA logic utilization and can operate on high frequency.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20152019001" target="_blank" >VI20152019001: Sondy pro analýzu a filtraci provozu na úrovni aplikačních protokolů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - 2019 22nd International Symposium on Design and Diagnostics of Electronic Circuits and Systems, DDECS 2019
ISBN
978-1-7281-0073-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Cluj-Napoca
Místo konání akce
Cluj-Napoca
Datum konání akce
24. 4. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000492839800022