Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Building and Evaluation of a Real Room Impulse Response Dataset

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134156" target="_blank" >RIV/00216305:26230/19:PU134156 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8717722" target="_blank" >https://ieeexplore.ieee.org/document/8717722</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JSTSP.2019.2917582" target="_blank" >10.1109/JSTSP.2019.2917582</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Building and Evaluation of a Real Room Impulse Response Dataset

  • Popis výsledku v původním jazyce

    This paper presents BUT ReverbDB - a dataset of real room impulse responses (RIR), background noises and re-transmitted speech data. The retransmitted data includes LibriSpeech test-clean, 2000 HUB5 English evaluation and part of 2010 NIST Speaker Recognition Evaluation datasets. We provide a detailed description of RIR collection (hardware, software, post-processing) that can serve as a "cook-book" for similar efforts. We also validate BUT ReverbDB in two sets of automatic speech recognition (ASR) experiments and draw conclusions for augmenting ASR training data with real and artificially generated RIRs. We show that a  limited number of real RIRs, carefully selected to match the target environment, provide results comparable to a large number of artificially generated RIRs, and that both sets can be combined to achieve the best ASR results. The dataset is distributed for free under a non-restrictive license and it currently contains data from 8 rooms, which is growing. The distribution package also contains a Kaldi-based recipe for augmenting publicly available AMI close-talk meeting data and test the results on an AMI single distant microphone set, allowing it to reproduce our experiments.

  • Název v anglickém jazyce

    Building and Evaluation of a Real Room Impulse Response Dataset

  • Popis výsledku anglicky

    This paper presents BUT ReverbDB - a dataset of real room impulse responses (RIR), background noises and re-transmitted speech data. The retransmitted data includes LibriSpeech test-clean, 2000 HUB5 English evaluation and part of 2010 NIST Speaker Recognition Evaluation datasets. We provide a detailed description of RIR collection (hardware, software, post-processing) that can serve as a "cook-book" for similar efforts. We also validate BUT ReverbDB in two sets of automatic speech recognition (ASR) experiments and draw conclusions for augmenting ASR training data with real and artificially generated RIRs. We show that a  limited number of real RIRs, carefully selected to match the target environment, provide results comparable to a large number of artificially generated RIRs, and that both sets can be combined to achieve the best ASR results. The dataset is distributed for free under a non-restrictive license and it currently contains data from 8 rooms, which is growing. The distribution package also contains a Kaldi-based recipe for augmenting publicly available AMI close-talk meeting data and test the results on an AMI single distant microphone set, allowing it to reproduce our experiments.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE J-STSP

  • ISSN

    1932-4553

  • e-ISSN

    1941-0484

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    863-876

  • Kód UT WoS článku

    000477715300008

  • EID výsledku v databázi Scopus

    2-s2.0-85069914610