Robust Recognition of Conversational Telephone Speech via Multi-Condition Training and Data Augmentation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F18%3A00006134" target="_blank" >RIV/46747885:24220/18:00006134 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-00794-2_35" target="_blank" >http://dx.doi.org/10.1007/978-3-030-00794-2_35</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-00794-2_35" target="_blank" >10.1007/978-3-030-00794-2_35</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Recognition of Conversational Telephone Speech via Multi-Condition Training and Data Augmentation
Popis výsledku v původním jazyce
In this paper, we focus on automatic recognition of telephone conversational speech in scenario, when no amount of genuine telephone recordings is available for training. The training set contains only data from a significantly different domain, such as recording of broadcast news. Significant mismatch arises between training and test conditions, which leads to deteriorated performance of the resulting recognition system. We aim to diminish this mismatch using the data augmentation. Speech compression and narrow-band spectrum are significant features of the telephone speech. We apply these effects to the training dataset artificially, in order to make it more similar to the desired test conditions. Using such augmented dataset, we subsequently train an acoustic model. Our experiments show that the augmented models achieve accuracy close to the results of a model trained on genuine telephone data. Moreover, when the augmentation is applied to the real-world telephone data, further accuracy gains are achieved. © Springer Nature Switzerland AG 2018.
Název v anglickém jazyce
Robust Recognition of Conversational Telephone Speech via Multi-Condition Training and Data Augmentation
Popis výsledku anglicky
In this paper, we focus on automatic recognition of telephone conversational speech in scenario, when no amount of genuine telephone recordings is available for training. The training set contains only data from a significantly different domain, such as recording of broadcast news. Significant mismatch arises between training and test conditions, which leads to deteriorated performance of the resulting recognition system. We aim to diminish this mismatch using the data augmentation. Speech compression and narrow-band spectrum are significant features of the telephone speech. We apply these effects to the training dataset artificially, in order to make it more similar to the desired test conditions. Using such augmented dataset, we subsequently train an acoustic model. Our experiments show that the augmented models achieve accuracy close to the results of a model trained on genuine telephone data. Moreover, when the augmentation is applied to the real-world telephone data, further accuracy gains are achieved. © Springer Nature Switzerland AG 2018.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/TH03010018" target="_blank" >TH03010018: DeepSpot - Multilingvální technologie pro detekci a včasné upozornění</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 21st International Conference on Text, Speech, and Dialogue, TSD 2018
ISBN
978-303000793-5
ISSN
03029743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
324-333
Název nakladatele
Springer Verlag
Místo vydání
—
Místo konání akce
Brno, Czech Republic
Datum konání akce
1. 1. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—