Extending Networking Curriculum with Applied Artificial Intelligence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134165" target="_blank" >RIV/00216305:26230/19:PU134165 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9000455" target="_blank" >https://ieeexplore.ieee.org/document/9000455</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EAEEIE46886.2019.9000455" target="_blank" >10.1109/EAEEIE46886.2019.9000455</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extending Networking Curriculum with Applied Artificial Intelligence
Popis výsledku v původním jazyce
Artificial Intelligence (AI) and related technologies like data mining, machine learning or neural networks became very popular in recent years. Many IT companies today require graduated students to understand and be able to apply these technologies. Application potential of AI is not limited only to robotics, image processing or intelligent agents but also in engineering areas like computer networking and communication. However, on most universities, networking courses focus mainly on transmission protocols, network services and hardware design only while AI, machine learning or neural networks are taught separately. This causes a gap that emerges between AI theory and engineering approach. Thus, teachers of engineering courses are challenged how to introduce their students to an application of AI in the engineering areas, e.g., electronics, communication, embedded systems, power grids, etc. This paper shows how selected AI techniques presently used in computer networks can be incorporated into networking curriculum and demonstrated to students which extends student competencies and prepares them better into future jobs. We also present two case studies where AI techniques are applied on networking data in order to solve typical engineering problems.
Název v anglickém jazyce
Extending Networking Curriculum with Applied Artificial Intelligence
Popis výsledku anglicky
Artificial Intelligence (AI) and related technologies like data mining, machine learning or neural networks became very popular in recent years. Many IT companies today require graduated students to understand and be able to apply these technologies. Application potential of AI is not limited only to robotics, image processing or intelligent agents but also in engineering areas like computer networking and communication. However, on most universities, networking courses focus mainly on transmission protocols, network services and hardware design only while AI, machine learning or neural networks are taught separately. This causes a gap that emerges between AI theory and engineering approach. Thus, teachers of engineering courses are challenged how to introduce their students to an application of AI in the engineering areas, e.g., electronics, communication, embedded systems, power grids, etc. This paper shows how selected AI techniques presently used in computer networks can be incorporated into networking curriculum and demonstrated to students which extends student competencies and prepares them better into future jobs. We also present two case studies where AI techniques are applied on networking data in order to solve typical engineering problems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/TF03000029" target="_blank" >TF03000029: Monitorování a digitální forenzní analýza prostředí IoT (IRONSTONE)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of EAEEIE 2019
ISBN
978-1-7281-3222-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
11-16
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Ruse
Místo konání akce
Ruse
Datum konání akce
4. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000719758500043