Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

SpeakerBeam: Speaker Aware Neural Network for Target Speaker Extraction in Speech Mixtures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134173" target="_blank" >RIV/00216305:26230/19:PU134173 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8736286" target="_blank" >https://ieeexplore.ieee.org/document/8736286</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JSTSP.2019.2922820" target="_blank" >10.1109/JSTSP.2019.2922820</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    SpeakerBeam: Speaker Aware Neural Network for Target Speaker Extraction in Speech Mixtures

  • Popis výsledku v původním jazyce

    The processing of speech corrupted by interfering overlapping speakers is one of the challenging problems with regards to todays automatic speech recognition systems. Recently, approaches based on deep learning have made great progress toward solving this problem. Most of these approaches tackle the problem as speech separation, i.e., they blindly recover all the speakers from the mixture. In some scenarios, such as smart personal devices, we may however be interested in recovering one target speaker froma mixture. In this paper, we introduce Speaker- Beam, a method for extracting a target speaker from the mixture based on an adaptation utterance spoken by the target speaker. Formulating the problem as speaker extraction avoids certain issues such as label permutation and the need to determine the number of speakers in the mixture.With SpeakerBeam, we jointly learn to extract a representation from the adaptation utterance characterizing the target speaker and to use this representation to extract the speaker. We explore several ways to do this, mostly inspired by speaker adaptation in acoustic models for automatic speech recognition. We evaluate the performance on the widely used WSJ0-2mix andWSJ0-3mix datasets, and these datasets modified with more noise or more realistic overlapping patterns. We further analyze the learned behavior by exploring the speaker representations and assessing the effect of the length of the adaptation data. The results show the benefit of including speaker information in the processing and the effectiveness of the proposed method.

  • Název v anglickém jazyce

    SpeakerBeam: Speaker Aware Neural Network for Target Speaker Extraction in Speech Mixtures

  • Popis výsledku anglicky

    The processing of speech corrupted by interfering overlapping speakers is one of the challenging problems with regards to todays automatic speech recognition systems. Recently, approaches based on deep learning have made great progress toward solving this problem. Most of these approaches tackle the problem as speech separation, i.e., they blindly recover all the speakers from the mixture. In some scenarios, such as smart personal devices, we may however be interested in recovering one target speaker froma mixture. In this paper, we introduce Speaker- Beam, a method for extracting a target speaker from the mixture based on an adaptation utterance spoken by the target speaker. Formulating the problem as speaker extraction avoids certain issues such as label permutation and the need to determine the number of speakers in the mixture.With SpeakerBeam, we jointly learn to extract a representation from the adaptation utterance characterizing the target speaker and to use this representation to extract the speaker. We explore several ways to do this, mostly inspired by speaker adaptation in acoustic models for automatic speech recognition. We evaluate the performance on the widely used WSJ0-2mix andWSJ0-3mix datasets, and these datasets modified with more noise or more realistic overlapping patterns. We further analyze the learned behavior by exploring the speaker representations and assessing the effect of the length of the adaptation data. The results show the benefit of including speaker information in the processing and the effectiveness of the proposed method.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE J-STSP

  • ISSN

    1932-4553

  • e-ISSN

    1941-0484

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    800-814

  • Kód UT WoS článku

    000477715300003

  • EID výsledku v databázi Scopus

    2-s2.0-85069900431