Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Self-supervised speaker embeddings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134182" target="_blank" >RIV/00216305:26230/19:PU134182 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2842.pdf" target="_blank" >https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2842.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2019-2842" target="_blank" >10.21437/Interspeech.2019-2842</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Self-supervised speaker embeddings

  • Popis výsledku v původním jazyce

    Contrary to i-vectors, speaker embeddings such as x-vectors are incapable of leveraging unlabelled utterances, due to the classification loss over training speakers. In this paper, we explore an alternative training strategy to enable the use of unlabelled utterances in training. We propose to train speaker embedding extractors via reconstructing the frames of a target speech segment, given the inferred embedding of another speech segment of the same utterance. We do this by attaching to the standard speaker embedding extractor a decoder network, which we feed not merely with the speaker embedding, but also with the estimated phone sequence of the target frame sequence. The reconstruction loss can be used either as a single objective, or be combined with the standard speaker classification loss. In the latter case, it acts as a regularizer, encouraging generalizability to speakers unseen during training. In all cases, the proposed architectures are trained from scratch and in an endto- end fashion. We demonstrate the benefits from the proposed approach on the VoxCeleb and Speakers in the Wild Databases, and we report notable improvements over the baseline.

  • Název v anglickém jazyce

    Self-supervised speaker embeddings

  • Popis výsledku anglicky

    Contrary to i-vectors, speaker embeddings such as x-vectors are incapable of leveraging unlabelled utterances, due to the classification loss over training speakers. In this paper, we explore an alternative training strategy to enable the use of unlabelled utterances in training. We propose to train speaker embedding extractors via reconstructing the frames of a target speech segment, given the inferred embedding of another speech segment of the same utterance. We do this by attaching to the standard speaker embedding extractor a decoder network, which we feed not merely with the speaker embedding, but also with the estimated phone sequence of the target frame sequence. The reconstruction loss can be used either as a single objective, or be combined with the standard speaker classification loss. In the latter case, it acts as a regularizer, encouraging generalizability to speakers unseen during training. In all cases, the proposed architectures are trained from scratch and in an endto- end fashion. We demonstrate the benefits from the proposed approach on the VoxCeleb and Speakers in the Wild Databases, and we report notable improvements over the baseline.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of Interspeech

  • ISBN

  • ISSN

    1990-9772

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    2863-2867

  • Název nakladatele

    International Speech Communication Association

  • Místo vydání

    Graz

  • Místo konání akce

    INTERSPEECH 2019

  • Datum konání akce

    15. 9. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000831796403001