Self-supervised speaker embeddings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134182" target="_blank" >RIV/00216305:26230/19:PU134182 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2842.pdf" target="_blank" >https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2842.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2019-2842" target="_blank" >10.21437/Interspeech.2019-2842</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-supervised speaker embeddings
Popis výsledku v původním jazyce
Contrary to i-vectors, speaker embeddings such as x-vectors are incapable of leveraging unlabelled utterances, due to the classification loss over training speakers. In this paper, we explore an alternative training strategy to enable the use of unlabelled utterances in training. We propose to train speaker embedding extractors via reconstructing the frames of a target speech segment, given the inferred embedding of another speech segment of the same utterance. We do this by attaching to the standard speaker embedding extractor a decoder network, which we feed not merely with the speaker embedding, but also with the estimated phone sequence of the target frame sequence. The reconstruction loss can be used either as a single objective, or be combined with the standard speaker classification loss. In the latter case, it acts as a regularizer, encouraging generalizability to speakers unseen during training. In all cases, the proposed architectures are trained from scratch and in an endto- end fashion. We demonstrate the benefits from the proposed approach on the VoxCeleb and Speakers in the Wild Databases, and we report notable improvements over the baseline.
Název v anglickém jazyce
Self-supervised speaker embeddings
Popis výsledku anglicky
Contrary to i-vectors, speaker embeddings such as x-vectors are incapable of leveraging unlabelled utterances, due to the classification loss over training speakers. In this paper, we explore an alternative training strategy to enable the use of unlabelled utterances in training. We propose to train speaker embedding extractors via reconstructing the frames of a target speech segment, given the inferred embedding of another speech segment of the same utterance. We do this by attaching to the standard speaker embedding extractor a decoder network, which we feed not merely with the speaker embedding, but also with the estimated phone sequence of the target frame sequence. The reconstruction loss can be used either as a single objective, or be combined with the standard speaker classification loss. In the latter case, it acts as a regularizer, encouraging generalizability to speakers unseen during training. In all cases, the proposed architectures are trained from scratch and in an endto- end fashion. We demonstrate the benefits from the proposed approach on the VoxCeleb and Speakers in the Wild Databases, and we report notable improvements over the baseline.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Interspeech
ISBN
—
ISSN
1990-9772
e-ISSN
—
Počet stran výsledku
5
Strana od-do
2863-2867
Název nakladatele
International Speech Communication Association
Místo vydání
Graz
Místo konání akce
INTERSPEECH 2019
Datum konání akce
15. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000831796403001