On Operations over Language Families
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU135162" target="_blank" >RIV/00216305:26230/19:PU135162 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.math.md/files/csjm/v27-n3/v27-n3-(pp255-282).pdf" target="_blank" >http://www.math.md/files/csjm/v27-n3/v27-n3-(pp255-282).pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Operations over Language Families
Popis výsledku v původním jazyce
Let O and F be an operation and a language family, respectively. So far, in terms of closure properties, the classical language theory has only investigated whether O(F) is strictly included in F, where O(F) is the family resulting from O applied to all members of F. If O(F) is strictly included F, F is closed under O; otherwise, it is not. This paper proposes a finer and wider approach to this investigation. Indeed, it studies almost all possible set-based relations between F and O(F), including O(F) = empty set; F is not a subset of O(F), O(F) is not a subset of F, F intersection O(F) is not empty set; F intersection O(F) = empty set, O(F) is not empty set; O(F) = F; and F is a subset of O(F). Many operations are studied in this way. A sketch of application perspectives and open problems closes the paper.
Název v anglickém jazyce
On Operations over Language Families
Popis výsledku anglicky
Let O and F be an operation and a language family, respectively. So far, in terms of closure properties, the classical language theory has only investigated whether O(F) is strictly included in F, where O(F) is the family resulting from O applied to all members of F. If O(F) is strictly included F, F is closed under O; otherwise, it is not. This paper proposes a finer and wider approach to this investigation. Indeed, it studies almost all possible set-based relations between F and O(F), including O(F) = empty set; F is not a subset of O(F), O(F) is not a subset of F, F intersection O(F) is not empty set; F intersection O(F) = empty set, O(F) is not empty set; O(F) = F; and F is a subset of O(F). Many operations are studied in this way. A sketch of application perspectives and open problems closes the paper.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Science Journal of Moldova
ISSN
1561-4042
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
MD - Moldavská republika
Počet stran výsledku
28
Strana od-do
255-282
Kód UT WoS článku
000504036200001
EID výsledku v databázi Scopus
2-s2.0-85088259462