SureTypeSC-a Random Forest and Gaussian mixture predictor of high confidence genotypes in single-cell data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU136007" target="_blank" >RIV/00216305:26230/19:PU136007 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/bioinformatics/article-abstract/35/23/5055/5497252?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/bioinformatics/article-abstract/35/23/5055/5497252?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/bioinformatics/btz412" target="_blank" >10.1093/bioinformatics/btz412</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SureTypeSC-a Random Forest and Gaussian mixture predictor of high confidence genotypes in single-cell data
Popis výsledku v původním jazyce
Motivation Accurate genotyping of DNA from a single cell is required for applications such as de novo mutation detection, linkage analysis and lineage tracing. However, achieving high precision genotyping in the single-cell environment is challenging due to the errors caused by whole-genome amplification. Two factors make genotyping from single cells using single nucleotide polymorphism (SNP) arrays challenging. The lack of a comprehensive single-cell dataset with a reference genotype and the absence of genotyping tools specifically designed to detect noise from the whole-genome amplification step. Algorithms designed for bulk DNA genotyping cause significant data loss when used for single-cell applications. Results In this study, we have created a resource of 28.7 million SNPs, typed at high confidence from whole-genome amplified DNA from single cells using the Illumina SNP bead array technology. The resource is generated from 104 single cells from two cell lines that are available from the Coriell repository. We used mother-father-proband (trio) information from multiple technical replicates of bulk DNA to establish a high quality reference genotype for the two cell lines on the SNP array. This enabled us to develop SureTypeSC-a two-stage machine learning algorithm that filters a substantial part of the noise, thereby retaining the majority of the high quality SNPs. SureTypeSC also provides a simple statistical output to show the confidence of a particular single-cell genotype using Bayesian statistics.
Název v anglickém jazyce
SureTypeSC-a Random Forest and Gaussian mixture predictor of high confidence genotypes in single-cell data
Popis výsledku anglicky
Motivation Accurate genotyping of DNA from a single cell is required for applications such as de novo mutation detection, linkage analysis and lineage tracing. However, achieving high precision genotyping in the single-cell environment is challenging due to the errors caused by whole-genome amplification. Two factors make genotyping from single cells using single nucleotide polymorphism (SNP) arrays challenging. The lack of a comprehensive single-cell dataset with a reference genotype and the absence of genotyping tools specifically designed to detect noise from the whole-genome amplification step. Algorithms designed for bulk DNA genotyping cause significant data loss when used for single-cell applications. Results In this study, we have created a resource of 28.7 million SNPs, typed at high confidence from whole-genome amplified DNA from single cells using the Illumina SNP bead array technology. The resource is generated from 104 single cells from two cell lines that are available from the Coriell repository. We used mother-father-proband (trio) information from multiple technical replicates of bulk DNA to establish a high quality reference genotype for the two cell lines on the SNP array. This enabled us to develop SureTypeSC-a two-stage machine learning algorithm that filters a substantial part of the noise, thereby retaining the majority of the high quality SNPs. SureTypeSC also provides a simple statistical output to show the confidence of a particular single-cell genotype using Bayesian statistics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BIOINFORMATICS
ISSN
1367-4803
e-ISSN
1460-2059
Svazek periodika
35
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
5055-5062
Kód UT WoS článku
000506808900024
EID výsledku v databázi Scopus
2-s2.0-85076331032