Speech Enhancement Using End-to-End Speech Recognition Objectives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU140038" target="_blank" >RIV/00216305:26230/19:PU140038 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8937250" target="_blank" >https://ieeexplore.ieee.org/document/8937250</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WASPAA.2019.8937250" target="_blank" >10.1109/WASPAA.2019.8937250</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Speech Enhancement Using End-to-End Speech Recognition Objectives
Popis výsledku v původním jazyce
Speech enhancement systems, which denoise and dereverberate distorted signals, are usually optimized based on signal reconstruction objectives including the maximum likelihood and minimum mean square error. However, emergent end-to-end neural methods enable to optimize the speech enhancement system with more applicationoriented objectives. For example, we can jointly optimize speech enhancement and automatic speech recognition (ASR) only with ASR error minimization criteria. The major contribution of this paper is to investigate how a system optimized based on the ASR objective improves the speech enhancement quality on various signal level metrics in addition to the ASR word error rate (WER) metric. We use a recently developed multichannel end-to-end (ME2E) system, which integrates neural dereverberation, beamforming, and attention-based speech recognition within a single neural network. Additionally, we propose to extend the dereverberation sub network of ME2E by dynamically varying the filter order in linear prediction by using reinforcement learning, and extend the beamforming subnetwork by incorporating the estimation of a speech distortion factor. The experiments reveal how well different signal level metrics correlate with the WER metric, and verify that learning-based speech enhancement can be realized by end-to-end ASR training objectives without using parallel clean and noisy data.
Název v anglickém jazyce
Speech Enhancement Using End-to-End Speech Recognition Objectives
Popis výsledku anglicky
Speech enhancement systems, which denoise and dereverberate distorted signals, are usually optimized based on signal reconstruction objectives including the maximum likelihood and minimum mean square error. However, emergent end-to-end neural methods enable to optimize the speech enhancement system with more applicationoriented objectives. For example, we can jointly optimize speech enhancement and automatic speech recognition (ASR) only with ASR error minimization criteria. The major contribution of this paper is to investigate how a system optimized based on the ASR objective improves the speech enhancement quality on various signal level metrics in addition to the ASR word error rate (WER) metric. We use a recently developed multichannel end-to-end (ME2E) system, which integrates neural dereverberation, beamforming, and attention-based speech recognition within a single neural network. Additionally, we propose to extend the dereverberation sub network of ME2E by dynamically varying the filter order in linear prediction by using reinforcement learning, and extend the beamforming subnetwork by incorporating the estimation of a speech distortion factor. The experiments reveal how well different signal level metrics correlate with the WER metric, and verify that learning-based speech enhancement can be realized by end-to-end ASR training objectives without using parallel clean and noisy data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
ISBN
978-1-7281-1123-0
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
234-238
Název nakladatele
IEEE Signal Processing Society
Místo vydání
New Paltz, NY
Místo konání akce
New Paltz, NY
Datum konání akce
20. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000527800200048