Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

BUT Text-Dependent Speaker Verification System for SdSV Challenge 2020

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138636" target="_blank" >RIV/00216305:26230/20:PU138636 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.isca-speech.org/archive/Interspeech_2020/pdfs/2882.pdf" target="_blank" >https://www.isca-speech.org/archive/Interspeech_2020/pdfs/2882.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2020-2882" target="_blank" >10.21437/Interspeech.2020-2882</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    BUT Text-Dependent Speaker Verification System for SdSV Challenge 2020

  • Popis výsledku v původním jazyce

    In this paper, we present the winning BUT submission for the text-dependent task of the SdSV challenge 2020. Given the large amount of training data available in this challenge, we explore successful techniques from text-independent systems in the text-dependent scenario. In particular, we trained x-vector extractors on both in-domain and out-of-domain datasets and combine them with i-vectors trained on concatenated MFCCs and bottleneck features, which have proven effective for the text-dependent scenario. Moreover, we proposed the use of phrase-dependent PLDA backend for scoring and its combination with a simple phrase recognizer, which brings up to 63% relative improvement on our development set with respect to using standard PLDA. Finally, we combine our different i-vector and x-vector based systems using a simple linear logistic regression score level fusion, which provides 28% relative improvement on the evaluation set with respect to our best single system.

  • Název v anglickém jazyce

    BUT Text-Dependent Speaker Verification System for SdSV Challenge 2020

  • Popis výsledku anglicky

    In this paper, we present the winning BUT submission for the text-dependent task of the SdSV challenge 2020. Given the large amount of training data available in this challenge, we explore successful techniques from text-independent systems in the text-dependent scenario. In particular, we trained x-vector extractors on both in-domain and out-of-domain datasets and combine them with i-vectors trained on concatenated MFCCs and bottleneck features, which have proven effective for the text-dependent scenario. Moreover, we proposed the use of phrase-dependent PLDA backend for scoring and its combination with a simple phrase recognizer, which brings up to 63% relative improvement on our development set with respect to using standard PLDA. Finally, we combine our different i-vector and x-vector based systems using a simple linear logistic regression score level fusion, which provides 28% relative improvement on the evaluation set with respect to our best single system.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH

  • ISBN

  • ISSN

    1990-9772

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    761-765

  • Název nakladatele

    International Speech Communication Association

  • Místo vydání

    Shanghai

  • Místo konání akce

    Sanghai

  • Datum konání akce

    25. 10. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000833594100158