Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic Speech Recognition Benchmark for Air-Traffic Communications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138640" target="_blank" >RIV/00216305:26230/20:PU138640 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://isca-speech.org/archive/Interspeech_2020/pdfs/2173.pdf" target="_blank" >https://isca-speech.org/archive/Interspeech_2020/pdfs/2173.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2020-2173" target="_blank" >10.21437/Interspeech.2020-2173</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic Speech Recognition Benchmark for Air-Traffic Communications

  • Popis výsledku v původním jazyce

    Advances in Automatic Speech Recognition (ASR) over the last decade opened new areas of speech-based automation such as in Air-Traffic Control (ATC) environments. Currently, voice communication and data links communications are the only way of contact between pilots and Air-Traffic Controllers (ATCo), where the former is the most widely used and the latter is a non-spoken method mandatory for oceanic messages and limited for some domestic issues. ASR systems on ATCo environments inherit increasing complexity due to accents from non- English speakers, cockpit noise, speaker-dependent biases and small in-domain ATC databases for training. Hereby, we introduce CleanSky EC-H2020 ATCO2, a project that aims to develop an ASR-based platform to collect, organize and automatically pre-process ATCo speech-data from air space. This paper conveys an exploratory benchmark of several state-ofthe- art ASR models trained on more than 170 hours of ATCo speech-data. We demonstrate that the cross-accent flaws due to speakers accents are minimized due to the amount of data, making the system feasible for ATC environments. The developed ASR system achieves an averaged word error rate (WER) of 7.75% across four databases. An additional 35% relative improvement in WER is achieved on one test set when training a TDNNF system with byte-pair encoding.

  • Název v anglickém jazyce

    Automatic Speech Recognition Benchmark for Air-Traffic Communications

  • Popis výsledku anglicky

    Advances in Automatic Speech Recognition (ASR) over the last decade opened new areas of speech-based automation such as in Air-Traffic Control (ATC) environments. Currently, voice communication and data links communications are the only way of contact between pilots and Air-Traffic Controllers (ATCo), where the former is the most widely used and the latter is a non-spoken method mandatory for oceanic messages and limited for some domestic issues. ASR systems on ATCo environments inherit increasing complexity due to accents from non- English speakers, cockpit noise, speaker-dependent biases and small in-domain ATC databases for training. Hereby, we introduce CleanSky EC-H2020 ATCO2, a project that aims to develop an ASR-based platform to collect, organize and automatically pre-process ATCo speech-data from air space. This paper conveys an exploratory benchmark of several state-ofthe- art ASR models trained on more than 170 hours of ATCo speech-data. We demonstrate that the cross-accent flaws due to speakers accents are minimized due to the amount of data, making the system feasible for ATC environments. The developed ASR system achieves an averaged word error rate (WER) of 7.75% across four databases. An additional 35% relative improvement in WER is achieved on one test set when training a TDNNF system with byte-pair encoding.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of Interspeech 2020

  • ISBN

  • ISSN

    1990-9772

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    2297-2301

  • Název nakladatele

    International Speech Communication Association

  • Místo vydání

    Shanghai

  • Místo konání akce

    Sanghai

  • Datum konání akce

    25. 10. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000833594102086