Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lessons Learned in Transcribing 5000 h of Air Traffic Control Communications for Robust Automatic Speech Understanding

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149719" target="_blank" >RIV/00216305:26230/23:PU149719 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2226-4310/10/10/898" target="_blank" >https://www.mdpi.com/2226-4310/10/10/898</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/aerospace10100898" target="_blank" >10.3390/aerospace10100898</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Lessons Learned in Transcribing 5000 h of Air Traffic Control Communications for Robust Automatic Speech Understanding

  • Popis výsledku v původním jazyce

    Voice communication between air traffic controllers (ATCos) and pilots is critical for ensuring safe and efficient air traffic control (ATC). The handling of these voice communications requires high levels of awareness from ATCos and can be tedious and error-prone. Recent attempts aim at integrating artificial intelligence (AI) into ATC communications in order to lessen ATCos's workload. However, the development of data-driven AI systems for understanding of spoken ATC communications demands large-scale annotated datasets, which are currently lacking in the field. This paper explores the lessons learned from the ATCO2 project, which aimed to develop an unique platform to collect, preprocess, and transcribe large amounts of ATC audio data from airspace in real time. This paper reviews (i) robust automatic speech recognition (ASR), (ii) natural language processing, (iii) English language identification, and (iv) contextual ASR biasing with surveillance data. The pipeline developed during the ATCO2 project, along with the open-sourcing of its data, encourages research in the ATC field, while the full corpus can be purchased through ELDA. ATCO2 corpora is suitable for developing ASR systems when little or near to no ATC audio transcribed data are available. For instance, the proposed ASR system trained with ATCO2 reaches as low as 17.9% WER on public ATC datasets which is 6.6% absolute WER better than with "out-of-domain" but gold transcriptions. Finally, the release of 5000 h of ASR transcribed speech-covering more than 10 airports worldwide-is a step forward towards more robust automatic speech understanding systems for ATC communications.

  • Název v anglickém jazyce

    Lessons Learned in Transcribing 5000 h of Air Traffic Control Communications for Robust Automatic Speech Understanding

  • Popis výsledku anglicky

    Voice communication between air traffic controllers (ATCos) and pilots is critical for ensuring safe and efficient air traffic control (ATC). The handling of these voice communications requires high levels of awareness from ATCos and can be tedious and error-prone. Recent attempts aim at integrating artificial intelligence (AI) into ATC communications in order to lessen ATCos's workload. However, the development of data-driven AI systems for understanding of spoken ATC communications demands large-scale annotated datasets, which are currently lacking in the field. This paper explores the lessons learned from the ATCO2 project, which aimed to develop an unique platform to collect, preprocess, and transcribe large amounts of ATC audio data from airspace in real time. This paper reviews (i) robust automatic speech recognition (ASR), (ii) natural language processing, (iii) English language identification, and (iv) contextual ASR biasing with surveillance data. The pipeline developed during the ATCO2 project, along with the open-sourcing of its data, encourages research in the ATC field, while the full corpus can be purchased through ELDA. ATCO2 corpora is suitable for developing ASR systems when little or near to no ATC audio transcribed data are available. For instance, the proposed ASR system trained with ATCO2 reaches as low as 17.9% WER on public ATC datasets which is 6.6% absolute WER better than with "out-of-domain" but gold transcriptions. Finally, the release of 5000 h of ASR transcribed speech-covering more than 10 airports worldwide-is a step forward towards more robust automatic speech understanding systems for ATC communications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Aerospace

  • ISSN

    2226-4310

  • e-ISSN

  • Svazek periodika

    2023

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    33

  • Strana od-do

    1-33

  • Kód UT WoS článku

    001093774900001

  • EID výsledku v databázi Scopus

    2-s2.0-85175267376