Lessons Learned in Transcribing 5000 h of Air Traffic Control Communications for Robust Automatic Speech Understanding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149719" target="_blank" >RIV/00216305:26230/23:PU149719 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2226-4310/10/10/898" target="_blank" >https://www.mdpi.com/2226-4310/10/10/898</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/aerospace10100898" target="_blank" >10.3390/aerospace10100898</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lessons Learned in Transcribing 5000 h of Air Traffic Control Communications for Robust Automatic Speech Understanding
Popis výsledku v původním jazyce
Voice communication between air traffic controllers (ATCos) and pilots is critical for ensuring safe and efficient air traffic control (ATC). The handling of these voice communications requires high levels of awareness from ATCos and can be tedious and error-prone. Recent attempts aim at integrating artificial intelligence (AI) into ATC communications in order to lessen ATCos's workload. However, the development of data-driven AI systems for understanding of spoken ATC communications demands large-scale annotated datasets, which are currently lacking in the field. This paper explores the lessons learned from the ATCO2 project, which aimed to develop an unique platform to collect, preprocess, and transcribe large amounts of ATC audio data from airspace in real time. This paper reviews (i) robust automatic speech recognition (ASR), (ii) natural language processing, (iii) English language identification, and (iv) contextual ASR biasing with surveillance data. The pipeline developed during the ATCO2 project, along with the open-sourcing of its data, encourages research in the ATC field, while the full corpus can be purchased through ELDA. ATCO2 corpora is suitable for developing ASR systems when little or near to no ATC audio transcribed data are available. For instance, the proposed ASR system trained with ATCO2 reaches as low as 17.9% WER on public ATC datasets which is 6.6% absolute WER better than with "out-of-domain" but gold transcriptions. Finally, the release of 5000 h of ASR transcribed speech-covering more than 10 airports worldwide-is a step forward towards more robust automatic speech understanding systems for ATC communications.
Název v anglickém jazyce
Lessons Learned in Transcribing 5000 h of Air Traffic Control Communications for Robust Automatic Speech Understanding
Popis výsledku anglicky
Voice communication between air traffic controllers (ATCos) and pilots is critical for ensuring safe and efficient air traffic control (ATC). The handling of these voice communications requires high levels of awareness from ATCos and can be tedious and error-prone. Recent attempts aim at integrating artificial intelligence (AI) into ATC communications in order to lessen ATCos's workload. However, the development of data-driven AI systems for understanding of spoken ATC communications demands large-scale annotated datasets, which are currently lacking in the field. This paper explores the lessons learned from the ATCO2 project, which aimed to develop an unique platform to collect, preprocess, and transcribe large amounts of ATC audio data from airspace in real time. This paper reviews (i) robust automatic speech recognition (ASR), (ii) natural language processing, (iii) English language identification, and (iv) contextual ASR biasing with surveillance data. The pipeline developed during the ATCO2 project, along with the open-sourcing of its data, encourages research in the ATC field, while the full corpus can be purchased through ELDA. ATCO2 corpora is suitable for developing ASR systems when little or near to no ATC audio transcribed data are available. For instance, the proposed ASR system trained with ATCO2 reaches as low as 17.9% WER on public ATC datasets which is 6.6% absolute WER better than with "out-of-domain" but gold transcriptions. Finally, the release of 5000 h of ASR transcribed speech-covering more than 10 airports worldwide-is a step forward towards more robust automatic speech understanding systems for ATC communications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Aerospace
ISSN
2226-4310
e-ISSN
—
Svazek periodika
2023
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
33
Strana od-do
1-33
Kód UT WoS článku
001093774900001
EID výsledku v databázi Scopus
2-s2.0-85175267376