Learning Document Embeddings Along With Their Uncertainties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138655" target="_blank" >RIV/00216305:26230/20:PU138655 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9149686" target="_blank" >https://ieeexplore.ieee.org/document/9149686</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TASLP.2020.3012062" target="_blank" >10.1109/TASLP.2020.3012062</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning Document Embeddings Along With Their Uncertainties
Popis výsledku v původním jazyce
Majority of the text modeling techniques yield only point-estimates of document embeddings and lack in capturing the uncertainty of the estimates. These uncertainties give a notion of how well the embeddings represent a document. We present Bayesian subspace multinomial model (Bayesian SMM), a generative log-linear model that learns to represent documents in the form of Gaussian distributions, thereby encoding the uncertainty in its covariance. Additionally, in the proposed Bayesian SMM, we address a commonly encountered problem of intractability that appears during variational inference in mixed-logit models. We also present a generative Gaussian linear classifier for topic identification that exploits the uncertainty in document embeddings. Our intrinsic evaluation using perplexity measure shows that the proposed Bayesian SMM fits the unseen test data better as compared to the state-of-the-art neural variational document model on (Fisher) speech and (20Newsgroups) text corpora. Our topic identification experiments showthat the proposed systems are robust to over-fitting on unseen test data. The topic ID results show that the proposedmodel outperforms state-of-the-art unsupervised topic models and achieve comparable results to the state-of-the-art fully supervised discriminative models.
Název v anglickém jazyce
Learning Document Embeddings Along With Their Uncertainties
Popis výsledku anglicky
Majority of the text modeling techniques yield only point-estimates of document embeddings and lack in capturing the uncertainty of the estimates. These uncertainties give a notion of how well the embeddings represent a document. We present Bayesian subspace multinomial model (Bayesian SMM), a generative log-linear model that learns to represent documents in the form of Gaussian distributions, thereby encoding the uncertainty in its covariance. Additionally, in the proposed Bayesian SMM, we address a commonly encountered problem of intractability that appears during variational inference in mixed-logit models. We also present a generative Gaussian linear classifier for topic identification that exploits the uncertainty in document embeddings. Our intrinsic evaluation using perplexity measure shows that the proposed Bayesian SMM fits the unseen test data better as compared to the state-of-the-art neural variational document model on (Fisher) speech and (20Newsgroups) text corpora. Our topic identification experiments showthat the proposed systems are robust to over-fitting on unseen test data. The topic ID results show that the proposedmodel outperforms state-of-the-art unsupervised topic models and achieve comparable results to the state-of-the-art fully supervised discriminative models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING
ISSN
2329-9290
e-ISSN
2329-9304
Svazek periodika
2020
Číslo periodika v rámci svazku
28
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
2319-2332
Kód UT WoS článku
000562410300004
EID výsledku v databázi Scopus
2-s2.0-85090796297