Skull Shape Reconstruction Using Cascaded Convolutional Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138661" target="_blank" >RIV/00216305:26230/20:PU138661 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0010482520302365?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0010482520302365?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compbiomed.2020.103886" target="_blank" >10.1016/j.compbiomed.2020.103886</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Skull Shape Reconstruction Using Cascaded Convolutional Networks
Popis výsledku v původním jazyce
Designing a cranial implant to restore the protective and aesthetic function of the patient's skull is a challenging process that requires a substantial amount of manual work, even for an experienced clinician. While computer-assisted approaches with various levels of required user interaction exist to aid this process, they are usually only validated on either a single type of simple synthetic defect or a very limited sample of real defects. The work presented in this paper aims to address two challenges: (i) design a fully automatic 3D shape reconstruction method that can address diverse shapes of real skull defects in various stages of healing and (ii) to provide an open dataset for optimization and validation of anatomical reconstruction methods on a set of synthetically broken skull shapes. We propose an application of the multi-scale cascade architecture of convolutional neural networks to the reconstruction task. Such an architecture is able to tackle the issue of trade-off between the output resolution and the receptive field of the model imposed by GPU memory limitations. Furthermore, we experiment with both generative and discriminative models and study their behavior during the task of anatomical reconstruction. The proposed method achieves an average surface error of 0.59 for our synthetic test dataset with as low as 0.48 for unilateral defects of parietal and temporal bone, matching state-of-the-art performance while being completely automatic. We also show that the model trained on our synthetic dataset is able to reconstruct real patient defects.
Název v anglickém jazyce
Skull Shape Reconstruction Using Cascaded Convolutional Networks
Popis výsledku anglicky
Designing a cranial implant to restore the protective and aesthetic function of the patient's skull is a challenging process that requires a substantial amount of manual work, even for an experienced clinician. While computer-assisted approaches with various levels of required user interaction exist to aid this process, they are usually only validated on either a single type of simple synthetic defect or a very limited sample of real defects. The work presented in this paper aims to address two challenges: (i) design a fully automatic 3D shape reconstruction method that can address diverse shapes of real skull defects in various stages of healing and (ii) to provide an open dataset for optimization and validation of anatomical reconstruction methods on a set of synthetically broken skull shapes. We propose an application of the multi-scale cascade architecture of convolutional neural networks to the reconstruction task. Such an architecture is able to tackle the issue of trade-off between the output resolution and the receptive field of the model imposed by GPU memory limitations. Furthermore, we experiment with both generative and discriminative models and study their behavior during the task of anatomical reconstruction. The proposed method achieves an average surface error of 0.59 for our synthetic test dataset with as low as 0.48 for unilateral defects of parietal and temporal bone, matching state-of-the-art performance while being completely automatic. We also show that the model trained on our synthetic dataset is able to reconstruct real patient defects.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS IN BIOLOGY AND MEDICINE
ISSN
0010-4825
e-ISSN
1879-0534
Svazek periodika
123
Číslo periodika v rámci svazku
103886
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
000558010800024
EID výsledku v databázi Scopus
2-s2.0-85086987267