Deep Learning for Cranioplasty in Clinical Practice: Going from Synthetic to Real Patient Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142904" target="_blank" >RIV/00216305:26230/21:PU142904 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0010482521005606?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0010482521005606?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compbiomed.2021.104766" target="_blank" >10.1016/j.compbiomed.2021.104766</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Learning for Cranioplasty in Clinical Practice: Going from Synthetic to Real Patient Data
Popis výsledku v původním jazyce
Correct virtual reconstruction of a de- fective skull is a prerequisite for successful cranioplasty and its automatization has the potential for accelerat- ing and standardizing the clinical workflow. This work provides a deep learning-based method for the recon- struction of a skull shape and cranial implant design on clinical data of patients indicated for cranioplasty. The method is based on a cascade of multi-branch vol- umetric CNNs that enables simultaneous training on two different types of cranioplasty ground-truth data: the skull patch, which represents the exact shape of the missing part of the original skull, and which can be eas- ily created artificially from healthy skulls, and expert- designed cranial implant shapes that are much harder to acquire. The proposed method reaches an average surface distance of the reconstructed skull patches of 0.67 mm on a clinical test set of 75 defective skulls. It also achieves a 12% reduction of a newly proposed de- fect border Gaussian curvature error metric, compared to a baseline model trained on synthetic data only. Ad- ditionally, it produces directly 3D printable cranial im- plant shapes with a Dice coefficient 0.88 and a surface error of 0.65 mm. The outputs of the proposed skull reconstruction method reach good quality and can be considered for use in semi- or fully automatic clinical cranial implant design workflows.
Název v anglickém jazyce
Deep Learning for Cranioplasty in Clinical Practice: Going from Synthetic to Real Patient Data
Popis výsledku anglicky
Correct virtual reconstruction of a de- fective skull is a prerequisite for successful cranioplasty and its automatization has the potential for accelerat- ing and standardizing the clinical workflow. This work provides a deep learning-based method for the recon- struction of a skull shape and cranial implant design on clinical data of patients indicated for cranioplasty. The method is based on a cascade of multi-branch vol- umetric CNNs that enables simultaneous training on two different types of cranioplasty ground-truth data: the skull patch, which represents the exact shape of the missing part of the original skull, and which can be eas- ily created artificially from healthy skulls, and expert- designed cranial implant shapes that are much harder to acquire. The proposed method reaches an average surface distance of the reconstructed skull patches of 0.67 mm on a clinical test set of 75 defective skulls. It also achieves a 12% reduction of a newly proposed de- fect border Gaussian curvature error metric, compared to a baseline model trained on synthetic data only. Ad- ditionally, it produces directly 3D printable cranial im- plant shapes with a Dice coefficient 0.88 and a surface error of 0.65 mm. The outputs of the proposed skull reconstruction method reach good quality and can be considered for use in semi- or fully automatic clinical cranial implant design workflows.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS IN BIOLOGY AND MEDICINE
ISSN
0010-4825
e-ISSN
1879-0534
Svazek periodika
137
Číslo periodika v rámci svazku
104766
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000704338500006
EID výsledku v databázi Scopus
2-s2.0-85113276148