Multiwavelength classification of X-ray selected galaxy cluster candidates using convolutional neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138667" target="_blank" >RIV/00216305:26230/20:PU138667 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/20:00116962
Výsledek na webu
<a href="https://academic.oup.com/mnras/article-abstract/496/4/4141/5858922?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/mnras/article-abstract/496/4/4141/5858922?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/mnras/staa1723" target="_blank" >10.1093/mnras/staa1723</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiwavelength classification of X-ray selected galaxy cluster candidates using convolutional neural networks
Popis výsledku v původním jazyce
Galaxy clusters appear as extended sources in XMM-Newton images, but not all extended sources are clusters. So, their proper classification requires visual inspection with optical images, which is a slow process with biases that are almost impossible to model. We tackle this problem with a novel approach, using convolutional neural networks (CNNs), a state-of-the-art image classification tool, for automatic classification of galaxy cluster candidates. We train the networks on combined XMM-Newton X-ray observations with their optical counterparts from the all-sky Digitized Sky Survey. Our data set originates from the XMM CLuster Archive Super Survey (X-CLASS) survey sample of galaxy cluster candidates, selected by a specially developed pipeline, the XAmin, tailored for extended source detection and characterization. Our data set contains 1707 galaxy cluster candidates classified by experts. Additionally, we create an official Zooniverse citizen science project, The Hunt for Galaxy Clusters, to probe whether citizen volunteers could help in a challenging task of galaxy cluster visual confirmation. The project contained 1600 galaxy cluster candidates in total of which 404 overlap with the experts sample. The networks were trained on expert and Zooniverse data separately. The CNN test sample contains 85 spectroscopically confirmed clusters and 85 non-clusters that appear in both data sets. Our custom network achieved the best performance in the binary classification of clusters and non-clusters, acquiring accuracy of 90percent, averaged after 10 runs. The results of using CNNs on combined X-ray and optical data for galaxy cluster candidate classification are encouraging, and there is a lot of potential for future usage and improvements.
Název v anglickém jazyce
Multiwavelength classification of X-ray selected galaxy cluster candidates using convolutional neural networks
Popis výsledku anglicky
Galaxy clusters appear as extended sources in XMM-Newton images, but not all extended sources are clusters. So, their proper classification requires visual inspection with optical images, which is a slow process with biases that are almost impossible to model. We tackle this problem with a novel approach, using convolutional neural networks (CNNs), a state-of-the-art image classification tool, for automatic classification of galaxy cluster candidates. We train the networks on combined XMM-Newton X-ray observations with their optical counterparts from the all-sky Digitized Sky Survey. Our data set originates from the XMM CLuster Archive Super Survey (X-CLASS) survey sample of galaxy cluster candidates, selected by a specially developed pipeline, the XAmin, tailored for extended source detection and characterization. Our data set contains 1707 galaxy cluster candidates classified by experts. Additionally, we create an official Zooniverse citizen science project, The Hunt for Galaxy Clusters, to probe whether citizen volunteers could help in a challenging task of galaxy cluster visual confirmation. The project contained 1600 galaxy cluster candidates in total of which 404 overlap with the experts sample. The networks were trained on expert and Zooniverse data separately. The CNN test sample contains 85 spectroscopically confirmed clusters and 85 non-clusters that appear in both data sets. Our custom network achieved the best performance in the binary classification of clusters and non-clusters, acquiring accuracy of 90percent, averaged after 10 runs. The results of using CNNs on combined X-ray and optical data for galaxy cluster candidate classification are encouraging, and there is a lot of potential for future usage and improvements.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Monthly Notices of the Royal Astronomical Society
ISSN
0035-8711
e-ISSN
1365-2966
Svazek periodika
496
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
4141-4153
Kód UT WoS článku
000574923200007
EID výsledku v databázi Scopus
2-s2.0-85095411533