O'TRAIN: A robust and flexible 'real or bogus' classifier for the study of the optical transient sky
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F22%3A00568212" target="_blank" >RIV/68378271:_____/22:00568212 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0339546" target="_blank" >https://hdl.handle.net/11104/0339546</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202142952" target="_blank" >10.1051/0004-6361/202142952</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
O'TRAIN: A robust and flexible 'real or bogus' classifier for the study of the optical transient sky
Popis výsledku v původním jazyce
Deep machine learning algorithms have now proven their efficiency in recognising patterns in images. These methods are now used in astrophysics to perform different classification tasks such as identifying bogus from real transient point-like sources. We explore this method to provide a robust and flexible algorithm that could be included in any kind of transient detection pipeline. We built a convolutional neural network (CNN) algorithm in order to perform a `real or bogus' classification task on transient candidate cutouts (subtraction residuals) provided by different kinds of optical telescopes. The training involved human-supervised labelling of the cutouts, which are split into two balanced data sets with `true' and `false' point-like source candidates. We tested our CNN model on the candidates produced by two different transient detection pipelines. In addition, we made use of several diagnostic tools to evaluate the classification performance of our CNN models.
Název v anglickém jazyce
O'TRAIN: A robust and flexible 'real or bogus' classifier for the study of the optical transient sky
Popis výsledku anglicky
Deep machine learning algorithms have now proven their efficiency in recognising patterns in images. These methods are now used in astrophysics to perform different classification tasks such as identifying bogus from real transient point-like sources. We explore this method to provide a robust and flexible algorithm that could be included in any kind of transient detection pipeline. We built a convolutional neural network (CNN) algorithm in order to perform a `real or bogus' classification task on transient candidate cutouts (subtraction residuals) provided by different kinds of optical telescopes. The training involved human-supervised labelling of the cutouts, which are split into two balanced data sets with `true' and `false' point-like source candidates. We tested our CNN model on the candidates produced by two different transient detection pipelines. In addition, we made use of several diagnostic tools to evaluate the classification performance of our CNN models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Svazek periodika
664
Číslo periodika v rámci svazku
Aug
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
18
Strana od-do
A81
Kód UT WoS článku
000838257200006
EID výsledku v databázi Scopus
2-s2.0-85136432628