Automatic Processing Pipeline for Collecting and Annotating Air-Traffic Voice Communication Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU143424" target="_blank" >RIV/00216305:26230/21:PU143424 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2673-4591/13/1/8/htm" target="_blank" >https://www.mdpi.com/2673-4591/13/1/8/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/engproc2021013008" target="_blank" >10.3390/engproc2021013008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Processing Pipeline for Collecting and Annotating Air-Traffic Voice Communication Data
Popis výsledku v původním jazyce
This document describes our pipeline for automatic processing of ATCO pilot audio communication we developed as part of the ATCO2 project. So far, we collected two thousand hours of audio recordings that we either preprocessed for the transcribers or used for semi-supervised training. Both methods of using the collected data can further improve our pipeline by retraining our models. The proposed automatic processing pipeline is a cascade of many standalone components: (a) segmentation, (b) volume control, (c) signal-to-noise ratio filtering, (d) diarization, (e) speech-totext (ASR) module, (f) English language detection, (g) call-sign code recognition, (h) ATCOpilot classification and (i) highlighting commands and values. The key component of the pipeline is a speech-to-text transcription system that has to be trained with real-world ATC data; otherwise, the performance is poor. In order to further improve speech-to-text performance, we apply both semisupervised training with our recordings and the contextual adaptation that uses a list of plausible callsigns from surveillance data as auxiliary information. Downstream NLP/NLU tasks are important from an application point of view. These application tasks need accurate models operating on top of the real speech-to-text output; thus, there is a need for more data too. Creating ATC data is the main aspiration of the ATCO2 project. At the end of the project, the data will be packaged and distributed by ELDA.
Název v anglickém jazyce
Automatic Processing Pipeline for Collecting and Annotating Air-Traffic Voice Communication Data
Popis výsledku anglicky
This document describes our pipeline for automatic processing of ATCO pilot audio communication we developed as part of the ATCO2 project. So far, we collected two thousand hours of audio recordings that we either preprocessed for the transcribers or used for semi-supervised training. Both methods of using the collected data can further improve our pipeline by retraining our models. The proposed automatic processing pipeline is a cascade of many standalone components: (a) segmentation, (b) volume control, (c) signal-to-noise ratio filtering, (d) diarization, (e) speech-totext (ASR) module, (f) English language detection, (g) call-sign code recognition, (h) ATCOpilot classification and (i) highlighting commands and values. The key component of the pipeline is a speech-to-text transcription system that has to be trained with real-world ATC data; otherwise, the performance is poor. In order to further improve speech-to-text performance, we apply both semisupervised training with our recordings and the contextual adaptation that uses a list of plausible callsigns from surveillance data as auxiliary information. Downstream NLP/NLU tasks are important from an application point of view. These application tasks need accurate models operating on top of the real speech-to-text output; thus, there is a need for more data too. Creating ATC data is the main aspiration of the ATCO2 project. At the end of the project, the data will be packaged and distributed by ELDA.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 9th OpenSky Symposium 2020, OpenSky Network, Brussels, Belgium
ISBN
—
ISSN
2504-3900
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1-10
Název nakladatele
MDPI
Místo vydání
Brussels
Místo konání akce
EUROCONTROL in Brussels, Belgium
Datum konání akce
18. 11. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—