Estimation of Execution Parameters for k-Wave Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU138609" target="_blank" >RIV/00216305:26230/21:PU138609 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-67077-1_7" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-67077-1_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-67077-1_7" target="_blank" >10.1007/978-3-030-67077-1_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimation of Execution Parameters for k-Wave Simulations
Popis výsledku v původním jazyce
Estimation of execution parameters takes centre stage in automatic offloading of complex biomedical workflows to cloud and high performance facilities. Since ordinary users have no or very limited knowledge of the performance characteristics of particular tasks in the workflow, the scheduling system has to have the capabilities to select appropriate amount of compute resources, e.g., compute nodes, GPUs, or processor cores and estimate the execution time and cost. The presented approach considers a fixed set of executables that can be used to create custom workflows, and collects performance data of successfully computed tasks. Since the workflows may differ in the structure and size of the input data, the execution parameters can only be obtained by searching the performance database and interpolating between similar tasks. This paper shows it is possible to predict the execution time and cost with a high confidence. If the task parameters are found in the performance database, the mean interpolation error stays below 2.29%. If only similar tasks are found, the mean interpolation error may grow up to 15%. Nevertheless, this is still an acceptable error since the cluster performance may vary on order of percent as well.
Název v anglickém jazyce
Estimation of Execution Parameters for k-Wave Simulations
Popis výsledku anglicky
Estimation of execution parameters takes centre stage in automatic offloading of complex biomedical workflows to cloud and high performance facilities. Since ordinary users have no or very limited knowledge of the performance characteristics of particular tasks in the workflow, the scheduling system has to have the capabilities to select appropriate amount of compute resources, e.g., compute nodes, GPUs, or processor cores and estimate the execution time and cost. The presented approach considers a fixed set of executables that can be used to create custom workflows, and collects performance data of successfully computed tasks. Since the workflows may differ in the structure and size of the input data, the execution parameters can only be obtained by searching the performance database and interpolating between similar tasks. This paper shows it is possible to predict the execution time and cost with a high confidence. If the task parameters are found in the performance database, the mean interpolation error stays below 2.29%. If only similar tasks are found, the mean interpolation error may grow up to 15%. Nevertheless, this is still an acceptable error since the cluster performance may vary on order of percent as well.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
High Performance Computing in Science and Engineering. HPCSE 2019
ISBN
978-3-030-67076-4
ISSN
—
e-ISSN
—
Počet stran výsledku
19
Strana od-do
116-134
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Cham
Místo konání akce
Hotel Soláň
Datum konání akce
20. 5. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—