Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimization of Execution Parameters of Moldable Ultrasound Workflows Under Incomplete Performance Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU146403" target="_blank" >RIV/00216305:26230/23:PU146403 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.fit.vut.cz/research/publication/12691/" target="_blank" >https://www.fit.vut.cz/research/publication/12691/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-22698-4_8" target="_blank" >10.1007/978-3-031-22698-4_8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimization of Execution Parameters of Moldable Ultrasound Workflows Under Incomplete Performance Data

  • Popis výsledku v původním jazyce

    Complex ultrasound workflows calculating the outcome of ultrasound procedures such as neurostimulation, tumour ablation or photoacoustic imaging are composed of many computational tasks requiring high performance computing or cloud facilities to be computed in a sensible time. Most of these tasks are written as moldable parallel programs being able to run across various numbers of compute nodes. The number of compute nodes assigned to particular tasks strongly affects the overall execution and queuing times of the whole workflow (makespan) as well as the total computational cost. This paper employs a genetic algorithm searching for a good resource distribution over the particular tasks, and a cluster simulator evaluating the makespan and cost of the candidate execution schedules. Since the exact execution time cannot be measured for every possible combination of the task, input data size, and assigned resources, several interpolation techniques are used to predict the task duration for a given amount of compute resources. The best execution schedules are eventually submit- ted to a real cluster with a PBS scheduler to validate the whole technique. The experimental results confirm the proposed cluster simulator corresponds to a real PBS job scheduler with a sufficient fidelity. The investigation of the interpolation techniques showed that incomplete performance data can be successfully completed by linear and quadratic interpolations making a maximum mean error below 10%. Finally, the paper shows it is possible to implement a user defined parameter which instructs the genetic algorithm to prefer either the makespan or cost, or find a suitable trade-off.

  • Název v anglickém jazyce

    Optimization of Execution Parameters of Moldable Ultrasound Workflows Under Incomplete Performance Data

  • Popis výsledku anglicky

    Complex ultrasound workflows calculating the outcome of ultrasound procedures such as neurostimulation, tumour ablation or photoacoustic imaging are composed of many computational tasks requiring high performance computing or cloud facilities to be computed in a sensible time. Most of these tasks are written as moldable parallel programs being able to run across various numbers of compute nodes. The number of compute nodes assigned to particular tasks strongly affects the overall execution and queuing times of the whole workflow (makespan) as well as the total computational cost. This paper employs a genetic algorithm searching for a good resource distribution over the particular tasks, and a cluster simulator evaluating the makespan and cost of the candidate execution schedules. Since the exact execution time cannot be measured for every possible combination of the task, input data size, and assigned resources, several interpolation techniques are used to predict the task duration for a given amount of compute resources. The best execution schedules are eventually submit- ted to a real cluster with a PBS scheduler to validate the whole technique. The experimental results confirm the proposed cluster simulator corresponds to a real PBS job scheduler with a sufficient fidelity. The investigation of the interpolation techniques showed that incomplete performance data can be successfully completed by linear and quadratic interpolations making a maximum mean error below 10%. Finally, the paper shows it is possible to implement a user defined parameter which instructs the genetic algorithm to prefer either the makespan or cost, or find a suitable trade-off.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Job Scheduling Strategies for Parallel Processing. JSSPP 2022

  • ISBN

    978-3-031-22697-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    20

  • Strana od-do

    152-171

  • Název nakladatele

    Springer Nature Switzerland AG

  • Místo vydání

    Virtual Event

  • Místo konání akce

    Lyon, France

  • Datum konání akce

    30. 5. 2022

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000972597400009