Performance-Cost Optimization of Moldable Scientific Workflows
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142893" target="_blank" >RIV/00216305:26230/21:PU142893 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/book/10.1007%2F978-3-030-88224-2" target="_blank" >https://link.springer.com/book/10.1007%2F978-3-030-88224-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-88224-2_8" target="_blank" >10.1007/978-3-030-88224-2_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance-Cost Optimization of Moldable Scientific Workflows
Popis výsledku v původním jazyce
Moldable scientific workflows represent a special class of scientific workflows where the tasks are written as distributed programs being able to exploit various amounts of computer resources. However, current cluster job schedulers require the user to specify the amount of resources per task manually. This often leads to suboptimal execution time and related cost of the whole workflow execution since many users have only limited experience and knowledge of the parallel efficiency and scaling. This paper proposes several mechanisms to automatically optimize the execution parameters of moldable workflows using genetic algorithms. The paper introduces a local optimization of workflow tasks, a global optimization of the workflow on systems with on-demand resource allocation, and a global optimization for systems with static resource allocation. Several objectives including the workflow makespan, computational cost and the percentage of idling nodes are investigated together with a trade-off parameter putting stress on one objective or another. The paper also discusses the structure and quality of several evolved workflow schedules and the possible reduction in makespan or cost. Finally, the computational requirements of evolutionary process together with the recommended genetic algorithm settings are investigated. The most complex workflows may be evolved in less than two minutes using the global optimization while in only 14s using the local optimization.
Název v anglickém jazyce
Performance-Cost Optimization of Moldable Scientific Workflows
Popis výsledku anglicky
Moldable scientific workflows represent a special class of scientific workflows where the tasks are written as distributed programs being able to exploit various amounts of computer resources. However, current cluster job schedulers require the user to specify the amount of resources per task manually. This often leads to suboptimal execution time and related cost of the whole workflow execution since many users have only limited experience and knowledge of the parallel efficiency and scaling. This paper proposes several mechanisms to automatically optimize the execution parameters of moldable workflows using genetic algorithms. The paper introduces a local optimization of workflow tasks, a global optimization of the workflow on systems with on-demand resource allocation, and a global optimization for systems with static resource allocation. Several objectives including the workflow makespan, computational cost and the percentage of idling nodes are investigated together with a trade-off parameter putting stress on one objective or another. The paper also discusses the structure and quality of several evolved workflow schedules and the possible reduction in makespan or cost. Finally, the computational requirements of evolutionary process together with the recommended genetic algorithm settings are investigated. The most complex workflows may be evolved in less than two minutes using the global optimization while in only 14s using the local optimization.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Job Scheduling Strategies for Parallel Processing
ISBN
978-3-030-88223-5
ISSN
—
e-ISSN
—
Počet stran výsledku
19
Strana od-do
149-167
Název nakladatele
Springer International Publishing
Místo vydání
Portland, Oregon USA
Místo konání akce
Portland, Oregon USA
Datum konání akce
17. 5. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—